Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comput Chem ; 45(16): 1329-1351, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38372509

RESUMEN

In this study, the enantioselectivity of ß-cyclodextrin and its derivatives towards propranolol enantiomers are investigated by molecular dynamic (MD) simulations. ß-cyclodextrin (ß-CD) have previously been shown to be able to recognize propranolol (PRP) enantiomers. To improve upon the enantioselectivity of ß-cyclodextrin, we propose the use of an ionic-liquid-modified-ß-cyclodextrin (ß-CD-IL). ß-CD-IL was found to be able to complex R and S propranolol enantiomers with differing binding energies. The molecular docking study reveals that the ionic liquid chain attached to the ß-CD molecule has significant interaction with propranolol. The formation of the most stable complex occurred between (S)-ß-CD-IL and (S)-propranolol with an energy of -5.80 kcal/mol. This is attributed to the formation of a hydrogen bond between the oxygen of the propranolol and the hydrogen on the primary rim of the (S)-ß-CD-IL cavity. This interaction is not detected in other complexes. The root mean-squared fluctuation (RMSF) value indicates that the NH group is the most flexible molecular fragment, followed by the aromatic group. Also of note, the formation of a complex between pristine ß-CD and (S)-propranolol is the least favorable.

2.
Crit Rev Anal Chem ; 53(3): 537-593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34477020

RESUMEN

Non-enzymatic glucose sensors based on the use of copper and its oxides have emerged as promising candidates to replace enzymatic glucose sensors owing to their stability, ease of fabrication, and superior sensitivity. This review explains the theories of the mechanism of glucose oxidation on copper transition metal electrodes. It also presents an overview on the development of among the best non-enzymatic copper-based glucose sensors in the past 10 years. A brief description of methods, interesting findings, and important performance parameters are provided to inspire the reader and researcher to create new improvements in sensor design. Finally, several important considerations that pertain to the nano-structuring of the electrode surface is provided.


Asunto(s)
Técnicas Biosensibles , Cobre , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Glucosa , Oxidación-Reducción , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA