Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-25, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380625

RESUMEN

Foodborne illnesses occur due to the contamination of fresh, frozen, or processed food products by some pathogens. Among several pathogens responsible for the illnesses, Listeria monocytogenes is one of the lethal bacteria that endangers public health. Several preexisting and novel technologies, especially non-thermal technologies are being studied for their antimicrobial effects, particularly toward L. monocytogenes. Some noteworthy emerging technologies include ultraviolet (UV) or light-emitting diode (LED), pulsed light, cold plasma, and ozonation. These technologies are gaining popularity since no heat is employed and undesirable deterioration of food quality, especially texture, and taste is devoided. This review aims to summarize the most recent advances in non-thermal processing technologies and their effect on inactivating L. monocytogenes in food products and on sanitizing packaging materials. These technologies use varying mechanisms, such as photoinactivation, photosensitization, disruption of bacterial membrane and cytoplasm, etc. This review can help food processing industries select the appropriate processing techniques for optimal benefits, in which the structural integrity of food can be preserved while simultaneously destroying L. monocytogenes present in foods. To eliminate Listeria spp., different technologies possess varying mechanisms such as rupturing the cell wall, formation of pyrimidine dimers in the DNA through photochemical effect, excitation of endogenous porphyrins by photosensitizers, generating reactive species, causing leakage of cellular contents and oxidizing proteins and lipids. These technologies provide an alternative to heat-based sterilization technologies and further development is still required to minimize the drawbacks associated with some technologies.

2.
Environ Sci Pollut Res Int ; 29(30): 45131-45149, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35474428

RESUMEN

The application of pesticides enhances food production vastly, and it cannot be prevented; longer fresh produce is contaminated with health-threatening pesticides even though traditional processing methods can remove these pesticides from food surfaces to a certain extent; novel emerging technologies such as cold plasma, ultrasound, electrolyzed water, and pulsed electric field could more effectively dissipate the pesticide content in food without the release of toxic residual on the food surface. The present review focuses on applying emerging technologies to degrade pesticide residues in great utility in the food processing industries. This review also discusses the pesticide removal efficacy and its mechanism involved in these technologies. The oxidation principle in cold plasma is recently gaining more importance for the degradation of pesticide residue in the food processing industries. Analysis of the emerging physical processing methods indicated greater efficacy in eradicating pesticide residues during agriculture processing. Even though the technologies such as EO (99% reduction in dimethoate), ultrasound (98.96% for chlorpyrifos), and irradiation (99.8% for pesticide in aqueous solution) can achieve promising results in pesticide degradation level, the rate and inactivation highly depend on the type of equipment and processing parameters involved in different techniques, surface characteristics of produce, treatment conditions, and nature of the pesticide. Therefore, to effectively remove these health-threatening pesticides from food surfaces, it is necessary to know the process parameters and efficacy of the applied technology on various pesticides.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Gases em Plasma , Dimetoato/análisis , Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Residuos de Plaguicidas/análisis , Plaguicidas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA