Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 127(12): 127202, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34597094

RESUMEN

In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO_{3}, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and LaAlO_{3}, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO_{2}/SrO interface configuration, leading to excess charge being pinned near the LaAlO_{3}/SrRuO_{3} interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO_{3}. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.

2.
npj Quantum Inf ; 6(1)2021.
Artículo en Inglés | MEDLINE | ID: mdl-37731847

RESUMEN

The helimagnet FeP is part of a family of binary pnictide materials with the MnP-type structure, which share a nonsymmorphic crystal symmetry that preserves generic band structure characteristics through changes in elemental composition. It shows many similarities, including in its magnetic order, to isostructural CrAs and MnP, two compounds that are driven to superconductivity under applied pressure. Here we present a series of high magnetic field experiments on high-quality single crystals of FeP, showing that the resistance not only increases without saturation by up to several hundred times its zero-field value by 35 T, but that it also exhibits an anomalously linear field dependence over the entire range when the field is aligned precisely along the crystallographic c-axis. A close comparison of quantum oscillation frequencies to electronic structure calculations links this orientation to a semi-Dirac point in the band structure, which disperses linearly in a single direction in the plane perpendicular to field, a symmetry-protected feature of this entire material family. We show that the two striking features of magnetoresistance-large amplitude and linear field dependence-arise separately in this system, with the latter likely due to a combination of ordered magnetism and topological band structure.

3.
Phys Rev Lett ; 119(25): 256403, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29303305

RESUMEN

We investigate the thickness-dependent electronic properties of ultrathin SrIrO_{3} and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic properties are further studied by scanning tunneling spectroscopy, showing that 4 unit cell SrIrO_{3} is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO_{3} requires antiferromagnetic order.

4.
J Phys Condens Matter ; 28(42): 426004, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27588503

RESUMEN

By means of first-principles calculations we study the structural, magnetic and electronic properties of SrRuO3 surface for the SrO termination. We find that the RuO6 octahedra and the structure of the SrO layers at the surface are strongly modified as well as the Ru-O-Ru bond angles. We find in the thin films a d xy ferro-orbital order. The d xy orbital becomes the lowest in energy as in other quasitwodimensional ruthenates. Such structural rearrangement, together with a band reduction, leads to a modification of the magnetic properties. We compare the Jahn-Teller effect between the ferromagnetic and antiferromagnetic phases. We show that an insulating G-type antiferromagnetic phase takes place in SrRuO3 thin films, substituting the metallic phase experimentally found in every bulk Sr-ruthenates. The single layer SrRuO3 presents many similarities with the Ca2RuO4 low temperature phase, these similarities disappear with a larger number of layers. A study of the ground state of the as function of the number of layers is presented, the competition between bandwidth and Coulomb repulsion determines the ground state. We propose the disorder as responsible for the exchange bias effect observed.

5.
Sci Rep ; 5: 15747, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26507287

RESUMEN

The emerging material class of complex-oxides, where manipulation of physical properties lead to new functionalities at their heterointerfaces, is expected to open new frontiers in Spintronics. For example, SrRuO3 is a promising material where external stimuli like strain, temperature and structural distortions control the stability of electronic and magnetic states, across its magnetic phase transition, useful for Spintronics. Despite this, not much has been studied to understand such correlations in SrRuO3. Here we explore the influence of electron-lattice correlation to electron-transport, at interfaces between SrRuO3 and Nb:SrTiO3 across its ferromagnetic transition, using a nanoscale transport probe and first-principles calculations. We find that the geometrical reconstructions at the interface and hence modifications in electronic structures dominate the transmission across its ferromagnetic transition, eventually flipping the charge-transport length-scale in SrRuO3. This approach can be easily extended to other devices where competing ground states can lead to different functional properties across their heterointerfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...