Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Microbiol ; 15: 1348171, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389541

RESUMEN

Introduction: Intensive beef cattle production systems are frequently implicated as a source of bacteria that can be transferred to nearby humans and animals via effluent water, manure used as fertilizer, or airborne particulate matter. It is crucial to understand microbial population dynamics due to manure pack desiccation, antibiotic usage, and antibiotic alternatives within beef cattle and their associated feedyard environment. Understanding how bacterial communities change in the presence of antibiotics can also improve management practices for reducing the spread of foodborne bacteria. Methods: In this study, we aimed to compare the microbiomes within cattle feces, the feedyard environment and artificially produced airborne particulate matter as a function of pen change and treatment with tylosin or probiotics. We utilized 16S rRNA sequencing to compare bacterial communities among sample types, study days, and treatment groups. Results: Bacterial community diversity varied as a function of sampling day and pen change (old or new) within fecal and manure pack samples. Manure pack samples from old pens and new pens contained diverse communities of bacteria on days 0 and 84; however, by day 119 of the study these taxonomic differences were less evident. Particulate matter samples exhibited significant differences in community diversity and predominant bacterial taxa compared to the manure pack they originated from. Treatment with tylosin did not meaningfully impact bacterial communities among fecal, environmental, or particulate matter samples; however, minor differences in bacterial community structure were observed in feces from cattle treated with probiotics. Discussion: This study was the first to characterize and compare microbial communities within feces, manure pack, and airborne particulate matter from the same location and as a function of tylosin and probiotic treatment, and pen change. Although fecal and environmental samples are commonly used in research studies and other monitoring programs to infer public health risk of bacteria and antimicrobial resistance determinants from feedyard environments, our study suggests that these samples may not be appropriate to infer public health risk associated with airborne particulate matter.

3.
J Anim Sci ; 90(13): 5086-98, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22851239

RESUMEN

Two hundred sixty-four crossbred heifers (initial BW = 354 kg ± 0.5) were used to determine effects of corn processing method and wet distillers grains plus solubles (WDGS) inclusion in finishing diets on animal performance, carcass characteristics, and manure characteristics. The study was conducted as a randomized complete block with a 2 × 2 factorial arrangement of treatments. Dietary treatments included steam-flaked corn (SFC)- and dry-rolled corn (DRC)-based finishing diets containing 0 or 20% WDGS (0SFC, 20SFC, 0DRC, and 20DRC, respectively). Heifers averaged 154 d on feed and were marketed in 3 groups. There were no interactions between corn processing method and WDGS detected (P ≥ 0.29) for any performance or carcass response variables. Heifers fed diets containing WDGS tended to have greater final BW (P = 0.10) and increased G:F (P = 0.08) compared with heifers fed diets without WDGS. Heifers fed SFC-based diets consumed 7% less feed (P < 0.01) and were 9% more efficient (P < 0.01) than heifers fed DRC-based diets. Carcass characteristics were not affected by corn processing method or WDGS inclusion (P ≥ 0.16). Intakes of OM, N, P, and K were greater (P ≤ 0.05) for heifers fed DRC-based diets than those fed SFC-based diets, which resulted in greater net accumulation of the nutrients in the manure (P ≤ 0.04). Heifers fed diets containing WDGS had greater (P < 0.01) intakes of N, P, and K than heifers fed diets without WDGS. As a result, a greater net accumulation of P and K (P ≤ 0.03) and N (P = 0.10) were present in the manure from cattle fed diets containing WDGS compared with those fed diets without WDGS. There was no interaction (P ≥ 0.16) between corn processing and WDGS on N volatilization losses. Nitrogen volatilization losses from manure (expressed as a percentage of intake and g·heifer(-1)·d(-1)) were greater (P < 0.01) for heifers fed SFC-based diets than heifers fed DRC-based diets. Feeding DRC-based finishing diets to heifers resulted in increased manure production and nutrient excretion and decreased N volatilization. Both corn processing method and WDGS inclusion affected animal performance and manure characteristics.


Asunto(s)
Alimentación Animal/análisis , Bovinos/fisiología , Dieta/veterinaria , Estiércol/análisis , Nitrógeno/análisis , Fósforo/análisis , Zea mays/química , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bovinos/crecimiento & desarrollo , Suplementos Dietéticos , Grano Comestible , Ambiente , Femenino , Carne/normas , Nitrógeno/metabolismo , Fósforo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA