Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 16: 1140785, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37415832

RESUMEN

The activity-regulated cytoskeleton-associated (Arc) protein is essential for synaptic plasticity and memory formation. The Arc gene, which contains remnants of a structural GAG retrotransposon sequence, produces a protein that self-assembles into capsid-like structures harboring Arc mRNA. Arc capsids, released from neurons, have been proposed as a novel intercellular mechanism for mRNA transmission. Nevertheless, evidence for intercellular transport of Arc in the mammalian brain is still lacking. To enable the tracking of Arc molecules from individual neurons in vivo, we devised an adeno-associated virus (AAV) mediated approach to tag the N-terminal of the mouse Arc protein with a fluorescent reporter using CRISPR/Cas9 homologous independent targeted integration (HITI). We show that a sequence coding for mCherry can successfully be knocked in at the 5' end of the Arc open reading frame. While nine spCas9 gene editing sites surround the Arc start codon, the accuracy of the editing was highly sequence-dependent, with only a single target resulting in an in-frame reporter integration. When inducing long-term potentiation (LTP) in the hippocampus, we observed an increase of Arc protein highly correlated with an increase in fluorescent intensity and the number of mCherry-positive cells. By proximity ligation assay (PLA), we demonstrated that the mCherry-Arc fusion protein retains the Arc function by interacting with the transmembrane protein stargazin in postsynaptic spines. Finally, we recorded mCherry-Arc interaction with presynaptic protein Bassoon in mCherry-negative surrounding neurons at close proximity to mCherry-positive spines of edited neurons. This is the first study to provide support for inter-neuronal in vivo transfer of Arc in the mammalian brain.

2.
Mol Ther Methods Clin Dev ; 29: 381-394, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37251982

RESUMEN

Cell therapy for Parkinson's disease has experienced substantial growth in the past decades with several ongoing clinical trials. Despite increasing refinement of differentiation protocols and standardization of the transplanted neural precursors, the transcriptomic analysis of cells in the transplant after its full maturation in vivo has not been thoroughly investigated. Here, we present spatial transcriptomics analysis of fully differentiated grafts in their host tissue. Unlike earlier transcriptomics analyses using single-cell technologies, we observe that cells derived from human embryonic stem cells (hESCs) in the grafts adopt mature dopaminergic signatures. We show that the presence of phenotypic dopaminergic genes, which were found to be differentially expressed in the transplants, is concentrated toward the edges of the grafts, in agreement with the immunohistochemical analyses. Deconvolution shows dopamine neurons being the dominating cell type in many features beneath the graft area. These findings further support the preferred environmental niche of TH-positive cells and confirm their dopaminergic phenotype through the presence of multiple dopaminergic markers.

3.
Gene Ther ; 26(1-2): 57-64, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30531868

RESUMEN

Glial cell-line derived neurotrophic factor (GDNF) is a promising therapeutic molecule to treat Parkinson's disease. Despite an excellent profile in experimental settings, clinical trials testing GDNF have failed. One of the theories to explain these negative outcomes is that the clinical trials were done in late-stage patients that have advanced nigrostriatal degeneration and may therefore not respond to a neurotrophic factor therapy. Based on this idea, we tested if the stage of nigrostriatal degeneration is important for GDNF-based therapies. Lentiviral vectors expressing regulated GDNF were delivered to the striatum of rats to allow GDNF expression to be turned on either while the nigrostriatal system was degenerating or after the nigrostriatal system had been fully lesioned by 6-OHDA. In the group of animals where GDNF expression was on during degeneration, neurons were rescued and there was a reversal of motor deficits. Turning GDNF expression on after the nigrostriatal system was lesioned did not rescue neurons or reverse motor deficits. In fact, these animals were indistinguishable from the control groups. Our results suggest that GDNF can reverse motor deficits and nigrostriatal pathology despite an ongoing nigrostriatal degeneration, if there is still a sufficient number of remaining neurons to respond to therapy.


Asunto(s)
Terapia Genética/métodos , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Enfermedad de Parkinson/terapia , Degeneración Estriatonigral/terapia , Animales , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Lentivirus/genética , Oxidopamina/toxicidad , Enfermedad de Parkinson/etiología , Ratas , Ratas Sprague-Dawley , Degeneración Estriatonigral/etiología , Sustancia Negra/metabolismo , Sustancia Negra/patología
4.
Mol Ther Methods Clin Dev ; 11: 29-39, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30324128

RESUMEN

Regulation of therapeutic transgene expression can increase the safety of gene therapy interventions, especially when targeting critical organs such as the brain. Although several gene expression systems have been described, none of the current systems has the required safety profile for clinical applications. Our group has previously adapted a system for novel gene regulation based on the destabilizing domain degron technology to successfully regulate glial cell-line derived neurotrophic factor in the brain (GDNF-F-DD). In the present study, we used GDNF-F-DD as a proof-of-principle molecule to fully characterize DD regulation in the brain. Our results indicate that DD could be regulated in a dose-dependent manner. In addition, GDNF-F-DD could also be induced in vivo repeatedly, without loss of activity or efficacy in vivo. Finally, DD regulation was able to be sustained for 24 weeks without loss of expression or any overt toxicity. The present study shows that DD has great potential to regulate gene expression in the brain.

5.
Neuropsychopharmacology ; 40(12): 2843-51, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25971591

RESUMEN

The lateral habenula (LHb) is viewed as a relay between the limbic system, the basal ganglia (BG), and monoaminergic neurons of the midbrain. If a prominent role has been evidenced in BG-mediated functions such as value-based decision-making, very little is known about the involvement of the LHb in limbic functions such as memory processing. In the present study, we used two pharmacological approaches-LHb reversible inactivation with intra-LHb infusion of muscimol, an agonist of the GABA-A receptor, or blockade of excitatory inputs with intra-LHb infusion of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an antagonist of the glutamatergic AMPA receptor-to investigate the involvement of the LHb in encoding, consolidation, and retrieval of spatial memory in the water maze (WM) in rats. We found that intra-LHb infusion of muscimol or CNQX prevented encoding and retrieval, but not consolidation of spatial information. In addition, muscimol but not CNQX induced impairments during a cued version of the WM task, and marked anxiety in the elevated plus maze. These results confirm the involvement of the LHb in higher cognitive functions. They further suggest a dichotomy between the role of glutamatergic and other inputs to the LHb in hippocampus-dependent memory processing, as well as in emotional aspects of goal-directed behaviors.


Asunto(s)
Habénula/fisiología , Memoria Espacial/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Análisis de Varianza , Animales , Señales (Psicología) , Esquema de Medicación , Antagonistas de Aminoácidos Excitadores/farmacología , Agonistas de Receptores de GABA-A/farmacología , Habénula/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Muscimol/farmacología , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Long-Evans , Retención en Psicología/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...