Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brief Funct Genomics ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38832682

RESUMEN

Sesame (Sesamum indicum L.) is a globally cultivated oilseed crop renowned for its historical significance and widespread growth in tropical and subtropical regions. With notable nutritional and medicinal attributes, sesame has shown promising effects in combating malnutrition cancer, diabetes, and other diseases like cardiovascular problems. However, sesame production faces significant challenges from environmental threats such as charcoal rot, drought, salinity, and waterlogging stress, resulting in economic losses for farmers. The scarcity of information on stress-resistance genes and pathways exacerbates these challenges. Despite its immense importance, there is currently no platform available to provide comprehensive information on sesame, which significantly hinders the mining of various stress-associated genes and the molecular breeding of sesame. To address this gap, here a free, web-accessible, and user-friendly genomic web resource (SesameGWR, http://backlin.cabgrid.res.in/sesameGWR/) has been developed This platform provides key insights into differentially expressed genes, transcription factors, miRNAs, and molecular markers like simple sequence repeats, single nucleotide polymorphisms, and insertions and deletions associated with both biotic and abiotic stresses.. The functional genomics information and annotations embedded in this web resource were predicted through RNA-seq data analysis. Considering the impact of climate change and the nutritional and medicinal importance of sesame, this study is of utmost importance in understanding stress responses. SesameGWR will serve as a valuable tool for developing climate-resilient sesame varieties, thereby enhancing the productivity of this ancient oilseed crop.

2.
Front Plant Sci ; 14: 1148658, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457353

RESUMEN

Wheat (Triticum aestivum L.) is a staple food crop for the global human population, and thus wheat breeders are consistently working to enhance its yield worldwide. In this study, we utilized a sub-set of Indian wheat mini core germplasm to underpin the genetic architecture for seed shape-associated traits. The wheat mini core subset (125 accessions) was genotyped using 35K SNP array and evaluated for grain shape traits such as grain length (GL), grain width (GW), grain length, width ratio (GLWR), and thousand grain weight (TGW) across the seven different environments (E1, E2, E3, E4, E5, E5, E6, and E7). Marker-trait associations were determined using a multi-locus random-SNP-effect Mixed Linear Model (mrMLM) program. A total of 160 non-redundant quantitative trait nucleotides (QTNs) were identified for four grain shape traits using two or more GWAS models. Among these 160 QTNs, 27, 36, 38, and 35 QTNs were associated for GL, GW, GLWR, and TGW respectively while 24 QTNs were associated with more than one trait. Of these 160 QTNs, 73 were detected in two or more environments and were considered reliable QTLs for the respective traits. A total of 135 associated QTNs were annotated and located within the genes, including ABC transporter, Cytochrome450, Thioredoxin_M-type, and hypothetical proteins. Furthermore, the expression pattern of annotated QTNs demonstrated that only 122 were differentially expressed, suggesting these could potentially be related to seed development. The genomic regions/candidate genes for grain size traits identified in the present study represent valuable genomic resources that can potentially be utilized in the markers-assisted breeding programs to develop high-yielding varieties.

3.
Sci Rep ; 13(1): 7870, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188743

RESUMEN

In recent years, the outbreak of infectious disease caused by Zika Virus (ZIKV) has posed a major threat to global public health, calling for the development of therapeutics to treat ZIKV disease. Several possible druggable targets involved in virus replication have been identified. In search of additional potential inhibitors, we screened 2895 FDA-approved compounds using Non-Structural Protein 5 (NS5) as a target utilizing virtual screening of in-silco methods. The top 28 compounds with the threshold of binding energy -7.2 kcal/mol value were selected and were cross-docked on the three-dimensional structure of NS5 using AutoDock Tools. Of the 2895 compounds screened, five compounds (Ceforanide, Squanavir, Amcinonide, Cefpiramide, and Olmesartan_Medoxomil) ranked highest based on filtering of having the least negative interactions with the NS5 and were selected for Molecular Dynamic Simulations (MDS) studies. Various parameters such as RMSD, RMSF, Rg, SASA, PCA and binding free energy were calculated to validate the binding of compounds to the target, ZIKV-NS5. The binding free energy was found to be -114.53, -182.01, -168.19, -91.16, -122.56, and -150.65 kJ mol-1 for NS5-SFG, NS5-Ceforanide, NS5-Squanavir, NS5-Amcinonide, NS5-Cefpiramide, and NS5-Ol_Me complexes respectively. The binding energy calculations suggested Cefpiramide and Olmesartan_Medoxomil (Ol_Me) as the most stable compounds for binding to NS5, indicating a strong rationale for their use as lead compounds for development of ZIKV inhibitors. As these drugs have been evaluated on pharmacokinetics and pharmacodynamics parameters only, in vitro and in vivo testing and their impact on Zika viral cell culture may suggest their clinical trials on ZIKV patients.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Humanos , Virus Zika/metabolismo , Infección por el Virus Zika/tratamiento farmacológico , Unión Proteica , Metiltransferasas/metabolismo , Reposicionamiento de Medicamentos , Proteínas no Estructurales Virales/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química
4.
Front Vet Sci ; 10: 1160486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37252384

RESUMEN

The milk, meat, skins, and draft power of domestic water buffalo (Bubalus bubalis) provide substantial contributions to the global agricultural economy. The world's water buffalo population is primarily found in Asia, and the buffalo supports more people per capita than any other livestock species. For evaluating the workflow, output rate, and completeness of transcriptome assemblies within and between reference-free (RF) de novo transcriptome and reference-based (RB) datasets, abundant bioinformatics studies have been carried out to date. However, comprehensive documentation of the degree of consistency and variability of the data produced by comparing gene expression levels using these two separate techniques is lacking. In the present study, we assessed the variations in the number of differentially expressed genes (DEGs) attained with RF and RB approaches. In light of this, we conducted a study to identify, annotate, and analyze the genes associated with four economically important traits of buffalo, viz., milk volume, age at first calving, post-partum cyclicity, and feed conversion efficiency. A total of 14,201 and 279 DEGs were identified in RF and RB assemblies. Gene ontology (GO) terms associated with the identified genes were allocated to traits under study. Identified genes improve the knowledge of the underlying mechanism of trait expression in water buffalo which may support improved breeding plans for higher productivity. The empirical findings of this study using RNA-seq data-based assembly may improve the understanding of genetic diversity in relation to buffalo productivity and provide important contributions to answer biological issues regarding the transcriptome of non-model organisms.

6.
3 Biotech ; 8(12): 499, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30498672

RESUMEN

Finger millet is being recognized as a potential future crop due to their nutrient contents and antioxidative properties, which are much higher compared to the other minor millets for providing health benefits. The synthesis of these nutritional components is governed by the expression of several gene(s). Therefore, it is necessary to characterize these genes for understanding the molecular mechanisms behind de novo synthesis of nutrient components. Apart from this, these important compounds could also serve as candidate genes for imparting stress tolerance in other crop plants also. In the present study, effort has been made to identify genes involved in Ascorbate-Glutathione cycle (Halliwell-Asada Pathway) and related pathway genes for elucidating its role in antioxidative potential mechanism through transcriptome data analysis. APX, DHAR, MDHAR, GR, and SOD have been identified as the key genes of the pathway in two genotypes GP-1 (low Ca2+) and GP-45 (high Ca2+) of finger millet with reference to rice as a model system, besides, 30 putatively expressed genes/proteins were also investigated. Furthermore, the sequences of identified genes were analyzed systematically; gene ontology (GO) annotation and enrichment analysis of assembled unitranscripts were also performed using Blast2GO. As a result, 49 GO terms, 5 Enzyme Commission (EC) numbers, and 2 KEGG pathway maps were generated. GO results revealed that these genes are mainly involved in two biological processes (BP), viz., oxidation-reduction process (GO:0055114) and cellular oxidant detoxification (GO:0098869), and showed oxidoreductase activity (GO:0016491). KEGG analysis showed that APX, DHAR, MDHAR, and GR are directly connected to biosynthetic pathways of secondary metabolites, mainly polyphenolic compounds (flavonoid, tannin, and lignin) involved in glutathione metabolism (KEGG:00480) and ascorbate and aldarate metabolism (KEGG:00053). While SOD, is indirectly connected and also has significant medicinal attributes and antioxidant properties. Moreover, Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values were also calculated for expression analysis and found that the FPKM values of genes present in GP-1 are higher than that of GP-45. Thus, GP-1 genotype was found to have higher stress regulated gene expression in comparison to GP-45. Taken together, the present transcriptome-based investigation unlocks new avenues for systematic functional analysis of novel ROS scavenging candidate genes that could be effectively applied for improvising human health and nutrition.

7.
Bioinformation ; 12(2): 74-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28104964

RESUMEN

Physico-chemical properties reflect the functional and structural characteristics of a protein. The comparative study of the physicochemical properties is important to know role of a protein in exploring its molecular evolution. A number of online and offline tools are available for calculating the physico-chemical properties of a single protein sequence. However, a tool is not available for a comparative study with graphical visualization of Multi-FASTA sequences. Hence, we describe the development and utility of MFPPI V.1.0 (a web interface developed in JAVA platform) to input each FASTA sequence from Multi-FASTA file into the ProtParam web server for the calculation of physico-chemical properties. MFPPI V.1.0 calculates different physico-chemical properties for a given set of proteins in a single run and saves the data in the MSExcel sheet. Furthermore, it provides a graphical representation of protein physico-chemical properties for analysis and visualization of data in a user-friendly manner. Therefore, the output from the analysis helps to understand compositional changes and functional relationship in evolution among organisms. We have demonstrated the utility of MFPPI V.1.0 using 17 mtATP6 protein sequences from different mammalian species. It is available for free at http://insilicogenomics.in/mfpcalc/mfppi.html.

8.
Bioinformation ; 12(3): 156-164, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28149050

RESUMEN

Lipoxygenase-1 (LOX-1) protein provides defense against pests and pathogens and its presence have been positively correlated with plant resistance against pathogens. Linoleate is a known substrate of lipoxygenase and it induces necrosis leading to the accumulation of isoflavonoid phytoalexins in plant leaves. Therefore, it is of interest to study the structural features of LOX-1 from Finger millet. However, the structure ofLOX-1 from Finger millet is not yet known. A homology model of LOX-1 from Finger millet is described. Domain architecture study suggested the presence of two domains namely PLAT (Phospho Lipid Acyl Transferase) and lipoxygenase. Molecular docking models of linoleate with lipoxygenase from finger millet, rice and sorghum are reported. The features of docked models showed that finger millet have higher pathogen resistance in comparison to other cereal crops. This data is useful for the molecular cloning of fulllength LOX-1 gene for validating its role in improving plant defense against pathogen infection and for various other biological processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA