Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 34(7): 1230-1234, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37252811

RESUMEN

Combinatorial post-translational modifications (PTMs), such as those forming the so-called "histone code", have been linked to cell differentiation, embryonic development, cellular reprogramming, aging, cancers, neurodegenerative disorders, etc. Nevertheless, a reliable mass spectral analysis of the combinatorial isomers represents a considerable challenge. The difficulty stems from the incompleteness of information that could be generated by the standard MS to differentiate cofragmented isomeric sequences in their naturally occurring mixtures based on the fragment mass-to-charge ratio and relative abundance information only. Here we show that fragment-fragment correlations revealed by two-dimensional partial covariance mass spectrometry (2D-PC-MS) allow one to solve the combinatorial PTM puzzles that cannot be tackled by the standard MS as a matter of principle. We introduce 2D-PC-MS marker ion correlation approach and demonstrate experimentally that it can provide the missing information enabling identification of cofragmentated combinatorially modified isomers. Our in silico study shows that the marker ion correlations can be used to unambiguously identify 5 times more cofragmented combinatorially acetylated tryptic peptides and 3 times more combinatorially modified Glu-C peptides of human histones than is possible using standard MS methods.


Asunto(s)
Histonas , Péptidos , Humanos , Péptidos/química , Espectrometría de Masas/métodos , Histonas/química , Código de Histonas , Procesamiento Proteico-Postraduccional
2.
Struct Dyn ; 9(6): 064301, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36389279

RESUMEN

In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of ( - 0.3 ± 0.1 ) π ≤ ϕ ≤ ( 0.1 ± 0.2 ) π and 18.2 - 1.4 + 1.7 ≤ T ≤ 23.9 - 1.1 + 1.2 fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates.

3.
Phys Chem Chem Phys ; 24(33): 19673-19686, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35946491

RESUMEN

The study of onset and decay, as well as control of ultrafast quantum coherence in many-electron systems is in the focus of interest of attosecond physics. Interpretation of attosecond experiments detecting the ultrafast quantum coherence requires application of advanced theoretical and computational tools combining many-electron theory, description of the electronic continuum, including in the strong laser field scenario, as well as nuclear dynamics theory. This perspective reviews the recent theoretical advances in understanding the attosecond dynamics of quantum coherence in photoionized molecular systems and outlines possible future directions of theoretical and experimental study of coherence and entanglement in the attosecond regime.

4.
Sci Adv ; 8(22): eabn6848, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35648864

RESUMEN

Here, we use x-rays to create and probe quantum coherence in the photoionized amino acid glycine. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay and by photoelectron emission from sequential double photoionization. Sinusoidal temporal modulation of the detected signal at early times (0 to 25 fs) is observed in both measurements. Advanced ab initio many-electron simulations allow us to explain the first 25 fs of the detected coherent quantum evolution in terms of the electronic coherence. In the kinematically complete x-ray absorption measurement, we monitor its dynamics for a period of 175 fs and observe an evolving modulation that may implicate the coupling of electronic to vibronic coherence at longer time scales. Our experiment provides a direct support for the existence of long-lived electronic coherence in photoionized biomolecules.

5.
Science ; 375(6578): 285-290, 2022 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-34990213

RESUMEN

In quantum systems, coherent superpositions of electronic states evolve on ultrafast time scales (few femtoseconds to attoseconds; 1 attosecond = 0.001 femtoseconds = 10-18 seconds), leading to a time-dependent charge density. Here we performed time-resolved measurements using attosecond soft x-ray pulses produced by a free-electron laser, to track the evolution of a coherent core-hole excitation in nitric oxide. Using an additional circularly polarized infrared laser pulse, we created a clock to time-resolve the electron dynamics and demonstrated control of the coherent electron motion by tuning the photon energy of the x-ray pulse. Core-excited states offer a fundamental test bed for studying coherent electron dynamics in highly excited and strongly correlated matter.

6.
Anal Chem ; 93(45): 14946-14954, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34723513

RESUMEN

We present a protein database search engine for the automatic identification of peptide and protein sequences using the recently introduced method of two-dimensional partial covariance mass spectrometry (2D-PC-MS). Because the 2D-PC-MS measurement reveals correlations between fragments stemming from the same or consecutive decomposition processes, the first-of-its-kind 2D-PC-MS search engine is based entirely on the direct matching of the pairs of theoretical and the experimentally detected correlating fragments, rather than of individual fragment signals or their series. We demonstrate that the high structural specificity afforded by 2D-PC-MS fragment correlations enables our search engine to reliably identify the correct peptide sequence, even from a spectrum with a large proportion of contaminant signals. While for peptides, the 2D-PC-MS correlation-matching procedure is based on complementary and internal ion correlations, the identification of intact proteins is entirely based on the ability of 2D-PC-MS to spatially separate and resolve the experimental correlations between complementary fragment ions.


Asunto(s)
Proteómica , Motor de Búsqueda , Bases de Datos de Proteínas , Espectrometría de Masas , Péptidos
7.
Anal Chem ; 93(31): 10779-10788, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34309360

RESUMEN

Two-dimensional partial covariance mass spectrometry (2D-PC-MS) exploits the inherent fluctuations of fragment ion abundances across a series of tandem mass spectra, to identify correlated pairs of fragment ions produced along the same fragmentation pathway of the same parent (e.g., peptide) ion. Here, we apply 2D-PC-MS to the analysis of intact protein ions in a standard linear ion trap mass analyzer, using the fact that the fragment-fragment correlation signals are much more specific to the biomolecular sequence than one-dimensional (1D) tandem mass spectrometry (MS/MS) signals at the same mass accuracy and resolution. We show that from the distribution of signals on a 2D-PC-MS map it is possible to extract the charge state of both parent and fragment ions without resolving the isotopic envelope. Furthermore, the 2D map of fragment-fragment correlations naturally separates the products of the primary decomposition pathways of the molecular ions from those of the secondary ones. We access this spectral information using an adapted version of the Hough transform. We demonstrate the successful identification of highly charged, intact protein molecules bypassing the need for high mass resolution. Using this technique, we also perform the in silico deconvolution of the overlapping fragment ion signals from two co-isolated and co-fragmented intact proteins, demonstrating a viable new method for the concurrent mass spectrometric identification of a mixture of intact protein ions from the same fragment ion spectrum.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Iones , Péptidos , Proteínas
8.
Molecules ; 26(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207274

RESUMEN

The rate of successful identification of peptide sequences by tandem mass spectrometry (MS/MS) is adversely affected by the common occurrence of co-isolation and co-fragmentation of two or more isobaric or isomeric parent ions. This results in so-called `chimera spectra', which feature peaks of the fragment ions from more than a single precursor ion. The totality of the fragment ion peaks in chimera spectra cannot be assigned to a single peptide sequence, which contradicts a fundamental assumption of the standard automated MS/MS spectra analysis tools, such as protein database search engines. This calls for a diagnostic method able to identify chimera spectra to single out the cases where this assumption is not valid. Here, we demonstrate that, within the recently developed two-dimensional partial covariance mass spectrometry (2D-PC-MS), it is possible to reliably identify chimera spectra directly from the two-dimensional fragment ion spectrum, irrespective of whether the co-isolated peptide ions are isobaric up to a finite mass accuracy or isomeric. We introduce '3-57 chimera tag' technique for chimera spectrum diagnostics based on 2D-PC-MS and perform numerical simulations to examine its efficiency. We experimentally demonstrate the detection of a mixture of two isomeric parent ions, even under conditions when one isomeric peptide is at one five-hundredth of the molar concentration of the second isomer.


Asunto(s)
Péptidos , Espectrometría de Masas en Tándem , Bases de Datos de Proteínas , Iones/metabolismo , Péptidos/metabolismo , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
9.
Phys Chem Chem Phys ; 23(21): 12376-12386, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34027527

RESUMEN

Attosecond pump-attosecond probe spectroscopy is becoming possible due the development of sub-femtosecond free electron laser (FEL) pulses as well as intense high-order harmonic generation-based attosecond sources. Here we investigate theoretically whether these developments can provide access to direct time-resolved measurement of Auger decay through detection of the total yield of an ionic decay product, in analogy to the photodissociation product detection in femtochemistry. We show that the ion yield based measurement is generally possible and in the case of the inner-valence hole decay can be background-free. Extensive first principles calculations are used to optimise the probe photon energies for a variety of prototypical systems.

10.
Phys Chem Chem Phys ; 22(5): 2704-2712, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31793561

RESUMEN

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

11.
J Chem Phys ; 148(11): 114101, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-29566533

RESUMEN

We present an ab initio theory and computational method for Penning ionization widths. Our method is based on the Fano theory of resonances, algebraic diagrammatic construction (ADC) scheme for many-electron systems, and Stieltjes imaging procedure. It includes an extension of the Fano-ADC scheme [V. Averbukh and L. S. Cederbaum, J. Chem. Phys. 123, 204107 (2005)] to triplet excited states. Penning ionization widths of various He*-H2 states are calculated as a function of the distance R between He* and H2. We analyze the asymptotic (large-R) dependences of the Penning widths in the region where the well-established electron transfer mechanism of the decay is suppressed by the multipole- and/or spin-forbidden energy transfer. The R-12 and R-8 power laws are derived for the asymptotes of the Penning widths of the singlet and triplet excited states of He*(1s2s1,3S), respectively. We show that the electron transfer mechanism dominates Penning ionization of He*(1s2s 3S)-H2 up until the He*-H2 separation is large enough for the radiative decay of He* to become the dominant channel. The same mechanism also dominates the ionization of He*(1s2s 1S)-H2 when R < 5 Å. We estimate that the regime of energy transfer in the He*-H2 Penning ionization cannot be reached by approaching zero collisional temperature. However, the multipole-forbidden energy transfer mechanism can become important for Penning ionization in doped helium droplets.

12.
J Chem Theory Comput ; 13(11): 5265-5272, 2017 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-29019679

RESUMEN

We demonstrate the use of dataflow technology in the computation of the correlation energy in molecules at the Møller-Plesset perturbation theory (MP2) level. Specifically, we benchmark density fitting (DF)-MP2 for as many as 168 atoms (in valinomycin) and show that speed-ups between 3 and 3.8 times can be achieved when compared to the MOLPRO package run on a single CPU. Acceleration is achieved by offloading the matrix multiplications steps in DF-MP2 to Dataflow Engines (DFEs). We project that the acceleration factor could be as much as 24 with the next generation of DFEs.

13.
Faraday Discuss ; 194: 117-145, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27711817

RESUMEN

The excited state non-adiabatic dynamics of polyatomic molecules, leading to the coupling of structural and electronic dynamics, is a fundamentally important yet challenging problem for both experiment and theory. Ongoing developments in ultrafast extreme vacuum ultraviolet (XUV) and soft X-ray sources present new probes of coupled electronic-structural dynamics because of their novel and desirable characteristics. As one example, inner-shell spectroscopy offers localized, atom-specific probes of evolving electronic structure and bonding (via chemical shifts). In this work, we present the first on-the-fly ultrafast X-ray time-resolved absorption spectrum simulations of excited state wavepacket dynamics: photo-excited ethylene. This was achieved by coupling the ab initio multiple spawning (AIMS) method, employing on-the-fly dynamics simulations, with high-level algebraic diagrammatic construction (ADC) X-ray absorption cross-section calculations. Using the excited state dynamics of ethylene as a test case, we assessed the ability of X-ray absorption spectroscopy to project out the electronic character of complex wavepacket dynamics, and evaluated the sensitivity of the calculated spectra to large amplitude nuclear motion. In particular, we demonstrate the pronounced sensitivity of the pre-edge region of the X-ray absorption spectrum to the electronic and structural evolution of the excited-state wavepacket. We conclude that ultrafast time-resolved X-ray absorption spectroscopy may become a powerful tool in the interrogation of excited state non-adiabatic molecular dynamics.

14.
J Chem Phys ; 145(14): 144307, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27782524

RESUMEN

We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

15.
Phys Rev Lett ; 116(7): 073001, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26943531

RESUMEN

Three-electron Auger decay is an exotic and elusive process, in which two outer-shell electrons simultaneously refill an inner-shell double vacancy with emission of a single Auger electron. Such transitions are forbidden by the many-electron selection rules, normally making their decay lifetimes orders of magnitude longer than the few-femtosecond lifetimes of normal (two-electron) Auger decay. Here we present theoretical predictions and direct experimental evidence for a few-femtosecond three-electron Auger decay of a double inner-valence-hole state in CH_{3}F. Our analysis shows that in contrast to double core holes, double inner-valence vacancies in molecules can decay exclusively by this ultrafast three-electron Auger process, and we predict that this phenomenon occurs widely.

16.
Nat Chem ; 7(11): 921-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26492013

RESUMEN

The role of internal molecular degrees of freedom, such as rotation, has scarcely been explored experimentally in low-energy collisions despite their significance to cold and ultracold chemistry. Particularly important to astrochemistry is the case of the most abundant molecule in interstellar space, hydrogen, for which two spin isomers have been detected, one of which exists in its rotational ground state whereas the other is rotationally excited. Here we demonstrate that quantization of molecular rotation plays a key role in cold reaction dynamics, where rotationally excited ortho-hydrogen reacts faster due to a stronger long-range attraction. We observe rotational state-dependent non-Arrhenius universal scaling laws in chemi-ionization reactions of para-H2 and ortho-H2 by He(2(3)P2), spanning three orders of magnitude in temperature. Different scaling laws serve as a sensitive gauge that enables us to directly determine the exact nature of the long-range intermolecular interactions. Our results show that the quantum state of the molecular rotor determines whether or not anisotropic long-range interactions dominate cold collisions.

17.
Faraday Discuss ; 171: 93-111, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25415260

RESUMEN

Ultrafast hole dynamics created in molecular systems as a result of sudden ionisation is the focus of much attention in the field of attosecond science. Using the molecule glycine we show through ab initio simulations that the dynamics of a hole, arising from ionisation in the inner valence region, evolves with a timescale appropriate to be measured using X-ray pulses from the current generation of SASE free electron lasers. The examined pump-probe scheme uses X-rays with photon energy below the K edge of carbon (275-280 eV) that will ionise from the inner valence region. A second probe X-ray at the same energy can excite an electron from the core to fill the vacancy in the inner-valence region. The dynamics of the inner valence hole can be tracked by measuring the Auger electrons produced by the subsequent refilling of the core hole as a function of pump-probe delay. We consider the feasibility of the experiment and include numerical simulation to support this analysis. We discuss the potential for all X-ray pump-X-ray probe Auger spectroscopy measurements for tracking hole migration.

18.
J Chem Phys ; 141(1): 014105, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-25005275

RESUMEN

An isolated bound state coupled to a continuum shows an exponential decay of its survival probability. Rates of the exponential decay occurring due to the bound-continuum coupling can be recovered from discretized continuum (L(2)) calculations using a computational technique known as Stieltjes-Chebyshev moment theory or Stieltjes imaging. At the same time, some genuinely discrete level systems, e.g., Bixon-Jortner model, also show an exponential (or approximately exponential) decay of the initially populated level before the onset of quantum revivals. Here, we demonstrate numerically that Stieltjes imaging can be used for calculation of the rates of the exponential decay in such discrete level systems. We apply the Stieltjes imaging technique to the approximately exponential decay of inner-valence vacancies in trans-butadiene in order to show that the breakdown of the molecular orbital picture of ionization in the inner valence region can be physically interpreted as an energy-forbidden Coster-Kronig transition.

19.
Phys Rev Lett ; 111(12): 123002, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-24093256

RESUMEN

We show how high-order harmonic generation spectroscopy can be used to follow correlation-driven electron hole dynamics with attosecond time resolution. The technique is applicable both to normal Auger transitions and to electron hole migration processes that do not lead to secondary electron emission. We theoretically simulate the proposed spectroscopy for M(4,5)NN Auger decay in Kr and for correlation-driven inner-valence hole dynamics in trans-butadiene and propanal.

20.
Phys Rev Lett ; 111(8): 083004, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-24010436

RESUMEN

We propose and simulate a new type of attosecond time-resolved spectroscopy of electron-hole dynamics, applicable particularly to ultrafast hole migration. Attosecond ionization in the inner-valence region is followed by a vacuum ultraviolet probe inducing single-photon laser-enabled Auger decay, a one-photon-two-electron transition filling the inner-valence vacancy. The double ionization probability as a function of the attosecond pump-vacuum ultraviolet probe delay captures efficiently the ultrafast inner-valence hole dynamics. Detailed ab initio calculations are presented for inner-valence hole migration in glycine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...