Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Oncol Biol Phys ; 116(2): 295-304, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235854

RESUMEN

PURPOSE: The American Association of Physicists in Medicine (AAPM) shares the results, conclusions, and recommendations from the initial Equity, Diversity, and Inclusion Climate Survey conducted in 2021. METHODS AND MATERIALS: The climate survey targeted medical physicists who are full members of the AAPM and included demographic inquiries and questions intended to assess the working environmental climate in terms of a sense of belonging and inclusion, experiences of discrimination and harassment, and obstacles to participation within the AAPM. The survey invitation was sent to 5,500 members. Responses were collected from 1385 members (response rate of 25%) between January and February 2021. RESULTS: Overall, the medical physics workplace climate was positive. However, some demographic and professional subgroups reported lower levels of agreement with positive characteristics of their workplace climates. Compared with men, women ranked lower 7 of 8 categories that characterized the workplace climate. Other subgroups that also ranked the workplace climate descriptors lower included individuals not originally from the United States and Canada (3/8). Most respondents strongly agreed/agreed that the climate within the AAPM was welcoming. However, 17% of respondents reported personally experiencing or witnessing microaggressions within the AAPM. Overall, medical physicists reported low levels of agreement that opportunities within the AAPM were available to them, from 34% to 60% among 8 categories, including opportunities to volunteer, join committees, and compete for leadership positions within the AAPM. Several subgroups reported even lower levels of agreement that these opportunities are available. Asian and Asian American respondents (3/8) and physicists with origins in countries outside the United States and Canada (7/8) reported fewer opportunities to participate in the AAPM. Medical physicists reported their experiences of discrimination and sexual harassment in their workplaces and within the AAPM. For those who reported personal experiences of sexual harassment, only 24% (15/63) felt comfortable reporting when it occurred within their workplaces, and 35% (9/26) felt comfortable reporting when it occurred within the AAPM. CONCLUSIONS: The report concludes with several recommendations for action.


Asunto(s)
Medicina , Acoso Sexual , Masculino , Humanos , Femenino , Estados Unidos , Física Sanitaria , Diversidad, Equidad e Inclusión , Encuestas y Cuestionarios
2.
J Radiosurg SBRT ; 8(2): 117-125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275137

RESUMEN

In Gamma Knife (GK) radiosurgery, dose rate decreases during the life cycle of its radiation source, extending treatment times. Prolonged treatments influence the amount of sublethal radiation injury that is repaired during exposure, and is associated with decreased biologically-equivalent dose (BED). We assessed the impact of treatment times on clinical outcomes following GK of the trigeminal nerve - a rare clinical model to isolate the effects of treatment times. This is a retrospective analysis of 192 patients with facial pain treated across three source exchanges. All patients were treated to 80 Gy with a single isocenter. Treatment time was analyzed in terms of patient anatomy-specific dose rate, as well as BED calculated from individual patient beam-on times. An outcome tool measuring pain in three distinct domains (pain intensity, interference with general and oro-facial activities of daily living), was administered before and after intervention. Multivariate linear regression was performed with dose rate/BED, brainstem dose, sex, age, diagnosis, and prior intervention as predictors. BED was an independent predictor of the degree of improvement in all three dimensions of pain severity. A decrease in dose rate by 1.5 Gy/min corresponded to 31.8% less improvement in the overall severity of pain. Post-radiosurgery incidence of facial numbness was increased for BEDs in the highest quartile. Treatment time is an independent predictor of pain outcomes, suggesting that prescription dose should be customized to ensure iso-effective treatments, while accounting for the possible increase in adverse effects at the highest BEDs.

3.
Med Phys ; 48(7): 3948-3957, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33843065

RESUMEN

INTRODUCTION: Ultra-high dose rate (FLASH) radiotherapy has become a popular research topic with the potential to reduce normal tissue toxicities without losing the benefit of tumor control. The development of FLASH proton pencil beam scanning (PBS) delivery requires accurate dosimetry despite high beam currents with correspondingly high ionization densities in the monitoring chamber. In this study, we characterized a newly designed high-resolution position sensing transmission ionization chamber with a purpose-built multichannel electrometer for both conventional and FLASH dose rate proton radiotherapy. METHODS: The dosimetry and positioning accuracies of the ion chamber were fully characterized with a clinical scanning beam. On the FLASH proton beamline, the cyclotron output current reached up to 350 nA with a maximum energy of 226.2 MeV, with 210 ± 3 nA nozzle pencil beam current. The ion recombination effect was characterized under various bias voltages up to 1000 V and different beam intensities. The charge collected by the transmission ion chamber was compared with the measurements from a Faraday cup. RESULTS: Cross-calibrated with an Advanced Markus chamber (PTW, Freiburg, Germany) in a uniform PBS proton beam field at clinical beam setting, the ion chamber calibration was 38.0 and 36.7 GyE·mm2 /nC at 100 and 226.2 MeV, respectively. The ion recombination effect increased with larger cyclotron current at lower bias voltage while remaining ≤0.5 ± 0.5% with ≥200 V of bias voltage. Above 200 V, the normalized ion chamber readings demonstrated good linearity with the mass stopping power in air for both clinical and FLASH beam intensities. The spot positioning accuracy was measured to be 0.10 ± 0.08 mm in two orthogonal directions. CONCLUSION: We characterized a transmission ion chamber system under both conventional and FLASH beam current densities and demonstrated its suitability for use as a proton pencil beam dose and spot position delivery monitor under FLASH dose rate conditions.


Asunto(s)
Terapia de Protones , Protones , Alemania , Radiometría , Dosificación Radioterapéutica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...