Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioimpacts ; 9(1): 25-36, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30788257

RESUMEN

Introduction: The major complications of stent implantation are restenosis and late stent thrombosis. PBMA polymers are used for stent coating because of their mechanical properties. We previously synthesized and characterized Dextrangraft-polybutylmethacrylate copolymer (Dex-PBMA) as a potential stent coating. In this study, we evaluated the haemocompatibility and biocompatibility properties of Dex-PBMA in vitro and in vivo. Methods: Here, we investigated: (1) the effectiveness of polymer coating under physiological conditions and its ability to release Tacrolimus®, (2) the capacity of Dex-PBMA to inhibit Staphylococcus aureus adhesion, (3) the thrombin generation and the human platelet adhesion in static and dynamic conditions, (4) the biocompatibility properties in vitro on human endothelial colony forming cells ( ECFC) and on mesenchymal stem cells (MSC) and in vivo in rat models, and (5) we implanted Dex-PBMA and Dex-PBMATAC coated stents in neointimal hyperplasia restenosis rabbit model. Results: Dex-PBMA coating efficiently prevented bacterial adhesion and release Tacrolimus®. Dex-PBMA exhibit haemocompatibility properties under flow and ECFC and MSC compatibility. In vivo, no pathological foreign body reaction was observed neither after intramuscular nor intravascular aortic implantation. After Dex-PBMA and Dex-PBMATAC coated stents 30 days implantation in a restenosis rabbit model, an endothelial cell coverage was observed and the lumen patency was preserved. Conclusion: Based on our findings, Dex-PBMA exhibited vascular compatibility and can potentially be used as a coating for metallic coronary stents.

2.
Biomed Res Int ; 2014: 679031, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25276808

RESUMEN

Atherosclerosis is a major cardiovascular disease. One of the side effects is restenosis. The aim of this work was to study the coating of stents by dextran derivates based polyelectrolyte's multilayer (PEM) films in order to increase endothelialization of injured arterial wall after stent implantation. Films were composed with diethylaminoethyl dextran (DEAE) as polycation and dextran sulphate (DS) as polyanion. One film was composed with 4 bilayers of (DEAE-DS)4 and was labeled D-. The other film was the same as D- but with an added terminal layer of DEAE polycation: (DEAE-DS)4-DEAE (labeled D+). The dynamic adsorption/desorption of proteins on the films were characterized by dynamic contact angle (DCA) and atomic force microscopy (AFM). Human endothelial cell (HUVEC) adhesion and proliferation were quantified and correlated to protein adsorption analyzed by DCA for fibronectin, vitronectin, and bovine serum albumin (BSA). Our results showed that the endothelial cell response was optimal for films composed of DS as external layer. Fibronectin was found to be the only protein to exhibit a reversible change in conformation after desorption test. This behavior was only observed for (DEAE-DS)4 films. (DEAE-DS)4 films could enhance HUVEC proliferation in agreement with fibronectin ability to easily change from conformation.


Asunto(s)
Materiales Biocompatibles/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Polisacáridos/química , Proteínas/aislamiento & purificación , Adsorción , Animales , Bovinos , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , DEAE Dextrano/química , Sulfato de Dextran/química , Fibronectinas/aislamiento & purificación , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Albúmina Sérica Bovina/aislamiento & purificación , Tensión Superficial/efectos de los fármacos , Vitronectina/aislamiento & purificación , Humectabilidad/efectos de los fármacos
3.
Acta Biomater ; 6(9): 3506-13, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20371388

RESUMEN

We have synthesized new structures obtained from amphiphilic copolymers of dextran and polybutylmethacrylate with the aim of endothelialization of biomaterials. Grafting of butylmethacrylate onto dextran has been carried out using ceric ammonium nitrate as initiator. Three copolymers were obtained (11, 30 and 37 wt.% dextran) and homogeneous thin films were successfully prepared. In contrast to dextran, the resulting films were stable in water, and copolymers characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry and dynamic mechanical analysis showed evidence of hybrid properties between the parent homopolymers. Surfaces of films were smooth when analyzed by atomic force microscopy (roughness 2+/-1 nm) but greatly differed in their hydrophilicity by increasing the dextran content (water contact angle from 99 degrees to 57 degrees). In contrast to polybutylmethacrylate, where the proliferation of vascular smooth muscle cells (VSMCs) was excellent but that of endothelial cells was very low, the copolymer containing 11% of dextran was excellent for endothelial cells but very limited for VSMCs. An in vitro wound assay demonstrated that copolymer with 11% dextran is even more favorable for endothelial cell migration than tissue-culture polystyrene. Increasing the dextran content in the copolymers decreased the proliferation for both vascular cell types. Altogether, these results show that transparent and water-insoluble films made from copolymers of dextran and butylmethacrylate copolymers with an appropriate composition could enhance endothelial cell proliferation and migration. Therefore, a potential benefit of this approach is the availability of surfaces with tunable properties for the endothelialization of materials.


Asunto(s)
Resinas Acrílicas/farmacología , Materiales Biocompatibles/farmacología , Dextranos/farmacología , Endotelio/efectos de los fármacos , Endotelio/metabolismo , Metacrilatos/farmacología , Adsorción/efectos de los fármacos , Animales , Rastreo Diferencial de Calorimetría , Bovinos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Microscopía de Fuerza Atómica , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Conejos , Albúmina Sérica Bovina/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...