Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Molecules ; 28(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37110847

RESUMEN

Klebsiella is a common dangerous pathogen for humans and animals and is widely present in the digestive system. The genus Klebsiella is ubiquitous, as it is endemic to surface water, soil, and sewage. In this study, 70 samples were obtained from soil-dwelling invertebrates from September 2021 to March 2022 from Taif and Shafa in different altitudinal regions of Saudi Arabia. Fifteen of these samples were identified as Klebsiella spp. The Klebsiella isolates were genetically identified as Klebsiella pneumoniae using rDNA sequencing. The antimicrobial susceptibility of the Klebsiella isolates was determined. Amplification of virulence genes was performed using PCR. In this study, 16S rDNA sequencing showed a similarity from 98% to 100% with related K. pneumonia from the NCBI database, and the sequences were deposited in the NCBI GenBank under accession numbers ON077036 to ON077050. The growth inhibition properties of ethanolic and methanolic extracts of the medicinal plant Rhazya stricta's leaves against K. pneumoniae strains using the minimum inhibitory concentration (MIC) method and disc diffusion were evaluated. In addition, the biofilm inhibitory potential of these extracts was investigated using crystal violet. HPLC analysis identified 19 components divided into 6 flavonoids, 11 phenolic acids, stilbene (resveratrol), and quinol, and revealed variations in the number of components and their quantities between extracts. Both extracts demonstrated interesting antibacterial properties against K. pneumoniae isolates. The 2 extracts also showed strong biofilm inhibitory activities, with percentages of inhibition extending from 81.5% to 98.7% and from 35.1% to 85.8% for the ethanolic and methanolic extracts, respectively. Rhazya stricta leaf extract revealed powerful antibacterial and antibiofilm activities against K. pneumoniae isolates and could be a good candidate for the treatment or prevention of K. pneumonia-related infections.


Asunto(s)
Apocynaceae , Klebsiella pneumoniae , Humanos , Altitud , Extractos Vegetales/química , Antibacterianos/química , Klebsiella , ADN Ribosómico , Pruebas de Sensibilidad Microbiana
2.
Plants (Basel) ; 11(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36365394

RESUMEN

Chamomile (Matricariarecutita L.) is one of the most important medicinal plants with various applications. The flowers and flower heads are the main organs inthe production of essential oil. The essential improvement goals of chamomile are considered to be high flower yield and oil content, as well asthe suitability for mechanical harvesting. The present study aimed to improve the flower yield, oil content and mechanical harvestability of German chamomile via chemical and physical mutagens. Three German chamomile populations (Fayum, Benysuif and Menia) were irradiated with 100, 200, 300 and 400 Gray doses of gamma rays, as well as chemically mutagenized using 0.001, 0.002 and 0.003 mol/mL of sodium azide for 4 h. The two mutagens produced a wide range of changes in the flowers' shape and size. At M3 generation, 18 mutants (11 from gamma irradiation and 7 from sodium azide mutagenization) were selected and morphologically characterized. Five out of eighteen mutants were selected for morphological and chemical characterization for oil content, oil composition and oil quality in M4 generation. Two promising mutants, F/LF5-2-1 and B/HNOF 8-4-2, were selected based on their performance in most studied traits during three generations, as well as the high percentage of cut efficiency and a homogenous flower horizon, which qualify them as suitable candidates for mechanical harvesting. The two mutants are late flowering elite mutants; the F/LF5-2-1 mutant possessed the highest oil content (1.77%) and number of flowers/plant (1595), while the second promising B/HNOF 8-4-2 mutant hada high oil content (1.29%) and chamazulene percentage (13.98%) compared to control plants. These results suggest that the B/HNOF 8-4-2 and F/LF5-2-1 mutants could be integrated as potential parents into breeding programs for a high number of flowers, high oil content, oil composition and oil color traits for German chamomile improvement.

3.
Molecules ; 27(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296520

RESUMEN

Diabetes mellitus is one of the most chronic metabolic diseases. In the past few years, our research group has synthesized and evaluated libraries of heterocyclic analogs against α-glucosidase and α-amylase enzymes and found encouraging results. The current study comprises the evaluation of benzimidazole-bearing thiosemicarbazone as antidiabetic agents. A library of fifteen derivatives (7-21) was synthesized, characterized via different spectroscopic techniques such as HREI-MS, NMR, and screened against α-glucosidase and α-amylase enzymes. All derivatives exhibited excellent to good biological inhibitory potentials. Derivatives 19 (IC50 = 1.30 ± 0.20 µM and 1.20 ± 0.20 µM) and 20 (IC50 = 1.60 ± 0.20 µM and 1.10 ± 0.01 µM) were found to be the most potent among the series when compared with standard drug acarbose (IC50 = 11.29 ± 0.07 and 11.12 ± 0.15 µM, respectively). These derivatives may potentially serve as the lead candidates for the development of new therapeutic representatives. The structure-activity relationship was carried out for all molecules which are mainly based upon the pattern of substituent/s on phenyl rings. Moreover, in silico docking studies were carried out to investigate the active binding mode of selected derivatives with the target enzymes.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Tiosemicarbazonas , Inhibidores de Glicósido Hidrolasas/química , alfa-Amilasas , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Acarbosa , Tiosemicarbazonas/farmacología , Relación Estructura-Actividad , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Bencimidazoles/química , Estructura Molecular
4.
Front Vet Sci ; 9: 952319, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187819

RESUMEN

Caseins determine the physicochemical, physiological, and biological characteristics of milk. Four caseins-alpha-S-1, alpha-S-2, beta, and kappa-were analyzed phylogenetically and in silico and characterized regarding chemical, antimicrobial, and antioxidant features in five dairy animals: Arabian camels, sheep, goats, cattle, and water buffalos. The sequence of full-length amino acids of the four caseins for the five species was retracted from the NCBI GenBank database. Multiple sequence alignment is used to examine further the candidate sequences for phylogenetic analysis using Clustal X and NJ-Plot tools. The results revealed that sheep and goats possess strong similarities (98.06%) because of their common ancestor. The same was observed with cattle and water buffalos (96.25%). The Arabian camel was located in a single subclade due to low similarity in casein residues and compositions with other dairy animals. Protein modeling showed that alpha-S1- and alpha-S2-caseins possess the highest number of phosphoserine residues. The in silico computed chemical properties showed that ß-casein recorded highest hydrophobicity index and lowest basic amino acid content, while α-S2-casein showed the opposite. The computed biological parameters revealed that α-S2-casein presented the highest bactericidal stretches. Only Arabian camel ß-casein and k-casein showed one bactericidal stretches. The analysis also revealed that ß-casein, particularly in Arabian camels, possesses the highest antioxidant activity index. These results support the importance of the bioinformatics resources to determine milk casein micelles' chemical and biological activities.

5.
Front Bioeng Biotechnol ; 10: 930161, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928959

RESUMEN

Oxidative stress is involved in the pathophysiology of multiple health complications, and it has become a major focus in targeted research fields. As known, black seeds are rich sources of bio-active compounds and widely used to promote human health due to their excellent medicinal and pharmaceutical properties. The present study investigated the antioxidant potency of various black seeds from plants and their derived mycoendophytes, and determined the total phenolic and flavonoid contents in different extracts, followed by characterization of major constituents by HPLC analysis. Finally, in silico docking determined their binding affinities to target myeloperoxidase enzymes. Ten dominant mycoendophytes were isolated from different black seed plants. Three isolates were then selected based on high antiradical potency and further identified by ITS ribosomal gene sequencing. Those isolated were Aspergillus niger TU 62, Chaetomium madrasense AUMC14830, and Rhizopus oryzae AUMC14823. Nigella sativa seeds and their corresponding endophyte A. niger had the highest content of phenolics in their n-butanol extracts (28.50 and 24.43 mg/g), flavonoids (15.02 and 11.45 mg/g), and antioxidant activities (90.48 and 81.48%), respectively, followed by Dodonaea viscosa and Portulaca oleracea along with their mycoendophytic R. oryzae and C. madrasense. Significant positive correlations were found between total phenolics, flavonoids, and the antioxidant activities of different tested extracts. The n-butanol extracts of both black seeds and their derived mycoendophytes showed reasonable IC50 values (0.81-1.44 mg/ml) compared to the control with significant correlations among their phytochemical contents. Overall, seventeen standard phenolics and flavonoids were used, and the compounds were detected in different degrees of existence and concentration in the examined extracts through HPLC analysis. Moreover, the investigation of the molecular simulation results of detected compounds against the myeloperoxidase enzyme revealed that, as a targeted antioxidant, rutin possessed a high affinity (-15.3184 kcal/mol) as an inhibitor. Taken together, the black seeds and their derived mycoendophytes are promising bio-prospects for the broad industrial sector of antioxidants with several valuable potential pharmaceutical and nutritional applications.

6.
Sci Rep ; 12(1): 13111, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35908106

RESUMEN

This study aimed to improve lipid and gamma-linolenic acid (GLA) production of an oleaginous fungus, Mucor plumbeus, through coculturing with Bacillus subtilis bacteria, optimising the environmental and nutritional culture conditions, and scaling them for batch fermentation. The maximum levels of biomass, lipid, fatty acid, and GLA in a 5 L bioreactor containing cellobiose and ammonium sulfate as the optimal carbon and nitrogen sources, respectively, achieved during the coculturing processes were 14.5 ± 0.4 g/L, 41.5 ± 1.3, 24 ± 0.8, and 20 ± 0.5%, respectively. This strategy uses cellobiose in place of glucose, decreasing production costs. The nutritional and abiotic factor results suggest that the highest production efficiency is achieved at 6.5 pH, 30 °C temperature, 10% (v/v) inoculum composition, 200 rpm agitation speed, and a 5-day incubation period. Interestingly, the GLA concentration of cocultures (20.0 ± 0.5%) was twofold higher than that of monocultures (8.27 ± 0.11%). More importantly, the GC chromatograms of cocultures indicated the presence of one additional peak corresponding to decanoic acid (5.32 ± 0.20%) that is absent in monocultures, indicating activation of silent gene clusters via cocultivation with bacteria. This study is the first to show that coculturing of Mucor plumbeus with Bacillus subtilis is a promising strategy with industrialisation potential for the production of GLA-rich microbial lipids and prospective biosynthesis of new products.


Asunto(s)
Bacillus , Ácido gammalinolénico , Bacillus subtilis , Celobiosa , Técnicas de Cocultivo , Fermentación , Mucor , Estudios Prospectivos
7.
Plants (Basel) ; 11(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807674

RESUMEN

Determining the appropriate parents for breeding programs is the most important decision that plant breeders must make to maximize the genetic variability and produce excellent recombinant genotypes. Several methods are used to identify genotypes with desirable phenotypic features for breeding experiments. In this study, five kalanchoe genotypes were morphologically characterized by assessing plant height, number of inflorescences, number of flowers, flower length, flower diameter and number of petals. The analysis showed the distinction of yellow kalanchoe in the plant height trait, while the orange kalanchoe was distinguished in the number of inflorescences, the number of flowers and flower length traits, whereas the violet kalanchoe possessed the largest flower diameter and the highest number of petals. The molecular profiling was performed by random amplified polymorphism DNA (RAPD), inter-simple sequence repeats (ISSR) and start codon targeted (SCoT)-polymerase chain reaction (PCR) tools. Genomic DNA was extracted from young leaves and the PCR reactions were performed using ten primers for each SCoT, ISSR and RAPD marker. Only four out of ten primers showed amplicon profiles in all PCR markers. A total of 70 bands were generated by SCoT, ISSR and RAPD-PCR with 35 polymorphic bands and 35 monomorphic bands. The total number of bands of RAPD, ISSR and SCoT was 15, 17 and 38, respectively. The polymorphism percentages achieved by RAPD, ISSR and SCoT were 60.25%, 15% and 57%, respectively. The cluster analysis based on morphological data revealed two clusters. Cluster I consisted of violet and orange kalanchoe, and cluster II comprised red, yellow and purple kalanchoe. Whereas the cluster analysis based on molecular data revealed three clusters. Cluster I included only yellow kalanchoe, cluster II comprised orange and violet kalanchoe while cluster III comprised red, and purple kalanchoe. The study concluded that orange, violet and yellow kalanchoe are distinguished parents for breeding economically valued traits in kalanchoe. Also, the study concluded that SCoT and RAPD markers reproduced reliable banding patterns to assess the genetic polymorphism among kalanchoe genotypes that consider the basis stone for genetic improvements in ornamental plants.

8.
Saudi J Biol Sci ; 29(5): 3675-3686, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35844395

RESUMEN

Salinity is widespread environmental stress that poses great obstacles to rapeseed development and growth. Polyamines are key plant growth regulators that play a pivotal role in regulating salt tolerance. Rapeseed (Brassica napus L.) seedlings were treated by spermine (Spm) and spermidine (Spd) versus untreated control under salt stress conditions. It was detected that the Spd-treated plants had significantly elevated chlorophyll and proline content and maintained higher photosystem II (PSII) activity than those treated with Spm as well as untreated control under salt-stressed conditions. Similarly, Spd alleviated the devastating effects of NaCl stress on CO2 assimilation and significantly elevated Rubisco activity (ribulose 1,5-bisphosphate carboxylase/oxygenase). The application of Spd also enhanced the activities of different antioxidant enzymes under NaCl stress. It modulated their respective transcription levels, including ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and dehydroascorbate reductase (DHAR). In addition, exogenously sprayed Spd enhanced the polyamine pathway as observed by upregulated transcription of polyamine oxidase (PAO) and diamine oxidase (DAO). The Spd application enhanced expressions of Calvin cycle enzyme related genes such as Rubisco small subunit, Rubisco large subunit, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglyceric acid kinase (PGK), triose-3-phosphate isomerase (TPI), fructose-1,6-bisphosphate aldolase (FBA), sedoheptulose-1,7-bisphosphatase (SBPase), and fructose-1,6-bisphosphate phosphatase (FBPase). Consequently, this study demonstrates that exogenous application of Spd has a valuable role in regulating antioxidant enzyme activity, polyamine pathway, and Calvin cycle enzyme-related genes to alleviate salt stress damage in the plants.

9.
Molecules ; 27(12)2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35744888

RESUMEN

Endophytic fungi including black aspergilli have the potential to synthesize multiple bioactive secondary metabolites. Therefore, the search for active metabolites from endophytic fungi against pathogenic microbes has become a necessity for alternative and promising strategies. In this study, 25 endophytic fungal isolates associated with Malus domestica were isolated, grown, and fermented on a solid rice medium. Subsequently, their ethyl acetate crude extracts were pretested for biological activity. One endophytic fungal isolate demonstrated the highest activity and was chosen for further investigation. Based on its phenotypic, ITS ribosomal gene sequences, and phylogenetic characterization, this isolate was identified as Aspergillus tubingensis strain AN103 with the accession number (KR184138). Chemical investigations of its fermented cultures yielded four compounds: Pyranonigrin A (1), Fonsecin (2), TMC 256 A1 (3), and Asperazine (4). Furthermore, 1H-NMR, HPLC, and LC-MS were performed for the identification and structure elucidation of these metabolites. The isolated pure compounds showed moderate-to-potent antibacterial activities against Pseudomonas aeruginosa and Escherichia coli (MIC value ranged from 31 and 121 to 14.5 and 58.3 µg/mL), respectively; in addition, the time−kill kinetics for the highly sensitive bacteria against isolated compounds was also investigated. The antifungal activity results show that (3) and (4) had the maximum effect against Fusarium solani and A. niger with inhibition zones of 16.40 ± 0.55 and 16.20 ± 0.20 mm, respectively, and (2) had the best effect against Candida albicans, with an inhibition zone of 17.8 ± 1.35 mm. Moreover, in a cytotoxicity assay against mouse lymphoma cell line L5178Y, (4) exhibited moderate cytotoxicity (49% inhibition), whereas (1−3) reported weak cytotoxicity (15, 26, and 19% inhibition), respectively. Our results reveal that these compounds might be useful to develop potential cytotoxic and antimicrobial drugs and an alternative source for various medical and pharmaceutical fields.


Asunto(s)
Malus , Animales , Antifúngicos/farmacología , Aspergillus/metabolismo , Ratones , Filogenia
10.
Front Nutr ; 9: 876817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35592629

RESUMEN

In this study, 18 standard amino acids were tested as a single nitrogen source on biomass, total lipid, total fatty acid (TFA) production, and yield of γ-linolenic acid (GLA) in Rhizomucor pusillus AUMC 11616.A and Mucor circinelloides AUMC 6696.A isolated from unusual habitats. Grown for 4 days at 28°C, shaking at 150 rpm, the maximum fungal biomass for AUMC 6696.A was 14.6 ± 0.2 g/L with arginine and 13.68 ± 0.1 g/L with asparagine, when these amino acids were used as single nitrogen sources, while AUMC 11616.A maximum biomass was 10.73 ± 0.8 g/L with glycine and 9.44 ± 0.6 g/L with valine. These were significantly higher than the ammonium nitrate control (p < 0.05). The highest levels of TFA were achieved with glycine for AUMC 11616.A, 26.2 ± 0.8% w/w of cell dry weight, and glutamic acid for AUMC 6696.A, 23.1 ± 1.3%. The highest GLA yield was seen with proline for AUMC 11616.A, 13.4 ± 0.6% w/w of TFA, and tryptophan for AUMC 6696.A, 12.8 ± 0.3%, which were 38% and 25% higher than the ammonium tartrate control. The effects of environmental factors such as temperature, pH, fermentation time, and agitation speed on biomass, total lipids, TFA, and GLA concentration of the target strains have also been investigated. Our results demonstrated that nitrogen assimilation through amino acid metabolism, as well as the use of glucose as a carbon source and abiotic factors, are integral to increasing the oleaginicity of tested strains. Few studies have addressed the role of amino acids in fermentation media, and this study sheds light on R. pusillus and M. circinelloides as promising candidates for the potential applications of amino acids as nitrogen sources in the production of lipids.

11.
Mol Divers ; 26(5): 2813-2823, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35220547

RESUMEN

Eco-friendly, low-cost and high-yielding synthetic route toward imidazoles and oxazoles has been developed. 1-(4,6-Dimethylpyrimidin-2-yl)-2-(alkylamino)-1,5-dihydro-4H-imidazol-4-one 3a-c have been synthesized via regiospecific reaction of ethyl 2-(N-(4,6-dimethylpyrimidin-2-yl)cyanamide)acetate 1 with primary aliphatic amines in water as green solvent. While, the reaction between 4,6-dimethylpyrimidin-2-yl(2-oxo-2-phenylethyl)cyanamide 2 and primary aliphatic amines using water and/or iso-propanol as green solvents afforded 3-(4,6-dimethylpyrimidin-2-yl)-5-phenyl-1,3-oxazole-2(3H)-imine 6 and 1-(4,6-dimethylpyrimidin-2-yl)-N-alkyl-4-phenyl-1H-imidazol-2-amine 7a-d, respectively.


Asunto(s)
Cianamida , Imidazoles , Aminas , Ciclización , Oxazoles , Propanoles , Solventes , Agua
12.
Plants (Basel) ; 11(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35050098

RESUMEN

Salinity is one of the harsh environmental stresses that destructively impact potato growth and production, particularly in arid regions. Exogenously applied safe-efficient materials is a vital approach for ameliorating plant growth, productivity, and quality under salinity stress. This study aimed at investigating the impact of foliar spray using folic acid (FA), ascorbic acid (AA), and salicylic acid (SA) at different concentrations (100, 150, or 200 mg/L) on plant growth, physiochemical ingredients, antioxidant defense system, tuber yield, and quality of potato (Solanum tuberosum L cv. Spunta) grown in salt-affected soil (EC = 7.14 dS/m) during two growing seasons. The exogenously applied antioxidant materials (FA, AA, and SA) significantly enhanced growth attributes (plant height, shoot fresh and dry weight, and leaves area), photosynthetic pigments (chlorophyll a and b and carotenoids), gas exchange (net photosynthetic rate, Pn; transpiration rate, Tr; and stomatal conductance, gs), nutrient content (N, P, and K), K+/ Na+ ratio, nonenzymatic antioxidant compounds (proline and soluble sugar content), enzymatic antioxidants (catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), and ascorbate peroxidase (APX)) tuber yield traits, and tuber quality (dry matter, protein, starch percentage, total carbohydrates, and sugars percentage) compared with untreated plants in both seasons. Otherwise, exogenous application significantly decreased Na+ and Cl- compared to the untreated control under salt stress conditions. Among the assessed treatments, the applied foliar of AA at a rate of 200 mg/L was more effective in promoting salt tolerance, which can be employed in reducing the losses caused by salinity stress in potato grown in salt-affected soils.

13.
Plants (Basel) ; 10(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34834656

RESUMEN

Sesame is sensitive to waterlogging, and its growth is devastatingly impacted under excess moisture conditions. Thus, waterlogging tolerance is crucial to alleviate yield constraints, particularly under expected climate change. In this study, 119 diverse sesame genotypes were screened for their tolerance to 12, 24, 48, and 72 h of waterlogging relative to non-waterlogged conditions. All plants died under 72 h of waterlogging, while 13.45%, 31.93%, and 45.38% of genotypes survived at 48, 24, and 12 h, respectively. Based on the seedling parameters and waterlogging tolerance coefficients, genotypes BD-7008 and BD-6985 exhibited the highest tolerance to waterlogging, while BD-6996 and JP-01811 were the most sensitive ones. The responses of these four genotypes to waterlogged conditions were assessed at different plant growth stages-30, 40, and 50 days after sowing (DAS)-versus normal conditions. Waterlogging, particularly when it occurred within 30 DAS, destructively affected the physiological and morphological characteristics, which was reflected in the growth and yield attributes. Genotype BD-7008, followed by BD-6985, exhibited the highest chlorophyll and proline contents as well as enzymatic antioxidant activities, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). These biochemical and physiological adjustments ameliorated the adverse effects of waterlogging, resulting in higher yields for both genotypes. Conversely, JP-01811 presented the lowest chlorophyll and proline contents as well as enzymatic antioxidant activities, resulting in the poorest growth and seed yield.

14.
J Fungi (Basel) ; 7(8)2021 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-34436184

RESUMEN

In this study, we investigated aqueous extracts of three edible mushrooms: Agaricus bisporus (white button mushroom), Pleurotus columbinus (oyster mushroom), and Pleurotus sajor-caju (grey oyster mushroom). The extracts were biochemically characterized for total carbohydrate, phenolic, flavonoid, vitamin, and protein contents besides amino acid analysis. Triple TOF proteome analysis showed 30.1% similarity between proteomes of the two Pleurotus spp. All three extracts showed promising antiviral activities. While Pleurotus columbinus extract showed potent activity against adenovirus (Ad7, selectivity index (SI) = 4.2), Agaricus bisporus showed strong activity against herpes simplex II (HSV-2; SI = 3.7). The extracts showed low cytotoxicity against normal human peripheral blood mononuclear cells (PBMCs) and moderate cytotoxicity against prostate (PC3, DU-145); colorectal (Colo-205); cecum carcinoma (LS-513); liver carcinoma (HepG2); cervical cancer (HeLa); breast adenocarcinoma (MDA-MB-231 and MCF-7) as well as leukemia (CCRF-CEM); acute monocytic leukemia (THP1); acute promyelocytic leukemia (NB4); and lymphoma (U937) cell lines. Antioxidant activity was evaluated using 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical scavenging, 2,2'-Azinobis-(3-Ethylbenzthiazolin-6-Sulfonic Acid) ABTS radical cation scavenging, and oxygen radical absorbance capacity (ORAC) assays. The three extracts showed potential antioxidant activities with the maximum activity recorded for Pleurotus columbinus (IC50 µg/mL) = 35.13 ± 3.27 for DPPH, 13.97 ± 4.91 for ABTS, and 29.42 ± 3.21 for ORAC assays.

15.
Biochem Biophys Rep ; 27: 101079, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34355069

RESUMEN

BACKGROUND AND AIM: Gastric Cancer (GC) is a leading cause of morbidity and mortality worldwide, particularly in developing nations, only a few suitable gastric cancer serum biomarkers with acceptable sensitivity and specificity exist. This work aims to highlight and uncover miR-30a-5p and miR-182-5p's diagnostic roles regarding gastric cancer and their roles in predicting prognosis. METHODS: 148 patients participated in this study. Groups I, II, and III had 47 patients with GC, 54 patients with benign gastric lesions, and 47 apparently healthy subjects of coincided age and gender as controls, respectively. All participants were clinically evaluated and subjected to CBC, serum CEA, and CA19-9 by ELISA, and real-time PCR tests of miR-30a-5p and miR-182-5p. RESULTS: MiR30a-5p and miR-182-5p were down regulated in gastric cancer patients in Group I more than Groups II and III (P < 0.001). ROC curve analysis revealed that miR30a-5p had better AUC, sensitivity, and specificity (0.961%, 93.62%, and 90.74%respectively). When miR-182-5p was gathered with CEA and CA19-9, specificity raised to 98.15% and PPV to 97.6%. Lower miR-30a-5p levels are linked with the presence of distant metastases, advanced TNM stage, and degree of pathological differentiation of tumors in GC patients (p = 0.034, 0.019, 0.049) respectively. According to the multivariate analysis, miR30a-5p expression level could be an independent predictor of GC. CONCLUSION: Our results exhibited that miRNAs, miR-30a-5p and miR182-5p, gene expression have a diagnostic power and can identify patients with GC. MiR-30a-5p displayed the highest diagnostic specificity and sensitivity. Besides other known tumor markers, they could offer simple noninvasive biomarkers that predict gastric cancer.

16.
Molecules ; 26(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34361776

RESUMEN

In this study, we examined aqueous extracts of the edible mushrooms Pleurotus ostreatus (oyster mushroom) and Lentinula edodes (shiitake mushroom). Proteome analysis was conducted using LC-Triple TOF-MS and showed the expression of 753 proteins by Pleurotus ostreatus, and 432 proteins by Lentinula edodes. Bioactive peptides: Rab GDP dissociation inhibitor, superoxide dismutase, thioredoxin reductase, serine proteinase and lectin, were identified in both mushrooms. The extracts also included promising bioactive compounds including phenolics, flavonoids, vitamins and amino acids. The extracts showed promising antiviral activities, with a selectivity index (SI) of 4.5 for Pleurotus ostreatus against adenovirus (Ad7), and a slight activity for Lentinula edodes against herpes simplex-II (HSV-2). The extracts were not cytotoxic to normal human peripheral blood mononuclear cells (PBMCs). On the contrary, they showed moderate cytotoxicity against various cancer cell lines. Additionally, antioxidant activity was assessed using DPPH radical scavenging, ABTS radical cation scavenging and ORAC assays. The two extracts showed potential antioxidant activities, with the maximum activity seen for Pleurotus ostreatus (IC50 µg/mL) = 39.46 ± 1.27 for DPPH; 11.22 ± 1.81 for ABTS; and 21.40 ± 2.20 for ORAC assays. This study encourages the use of these mushrooms in medicine in the light of their low cytotoxicity on normal PBMCs vis à vis their antiviral, antitumor and antioxidant capabilities.


Asunto(s)
Antineoplásicos/química , Antioxidantes/química , Antivirales/química , Proteínas Fúngicas/química , Pleurotus/química , Proteoma/química , Hongos Shiitake/química , Aminoácidos/química , Aminoácidos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Antivirales/aislamiento & purificación , Antivirales/farmacología , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Mezclas Complejas/química , Flavonoides/química , Flavonoides/aislamiento & purificación , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/aislamiento & purificación , Humanos , Lectinas/química , Lectinas/aislamiento & purificación , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Especificidad de Órganos , Fenoles/química , Fenoles/aislamiento & purificación , Picratos/antagonistas & inhibidores , Pleurotus/metabolismo , Cultivo Primario de Células , Proteoma/clasificación , Proteoma/aislamiento & purificación , Serina Proteasas/química , Serina Proteasas/aislamiento & purificación , Hongos Shiitake/metabolismo , Ácidos Sulfónicos/antagonistas & inhibidores , Superóxido Dismutasa/química , Superóxido Dismutasa/aislamiento & purificación , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/aislamiento & purificación , Vitaminas/química , Vitaminas/aislamiento & purificación , Agua/química
17.
Polymers (Basel) ; 13(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34301067

RESUMEN

The unique properties and advantages of edible films over conventional food packaging have led the way to their extensive exploration in recent years. Moreover, the incorporation of bioactive components during their production has further enhanced the intrinsic features of packaging materials. This study was aimed to develop edible and bioactive food packaging films comprising yeast incorporated into bacterial cellulose (BC) in conjunction with carboxymethyl cellulose (CMC) and glycerol (Gly) to extend the shelf life of packaged food materials. First, yeast biomass and BC hydrogels were produced by Meyerozyma guilliermondii (MT502203.1) and Gluconacetobacter xylinus (ATCC53582), respectively, and then the films were developed ex situ by mixing 30 wt.% CMC, 30 wt.% Gly, 2 wt.% yeast dry biomass, and 2 wt.% BC slurry. FE-SEM observation showed the successful incorporation of Gly and yeast into the fibrous cellulose matrix. FTIR spectroscopy confirmed the development of composite films through chemical interaction between BC, CMC, Gly, and yeast. The developed BC/CMC/Gly/yeast composite films showed high water solubility (42.86%). The yeast-incorporated films showed antimicrobial activities against three microbial strains, including Escherichia coli, Pseudomonas aeruginosa, and Saccharomyces aureus, by producing clear inhibition zones of 16 mm, 10 mm, and 15 mm, respectively, after 24 h. Moreover, the films were non-toxic against NIH-3T3 fibroblast cells. Finally, the coating of oranges and tomatoes with BC/CMC/Gly/yeast composites enhanced the shelf life at different storage temperatures. The BC/CMC/Gly/yeast composite film-coated oranges and tomatoes demonstrated acceptable sensory features such as odor and color, not only at 6 °C but also at room temperature and further elevated temperatures at 30 °C and 40 °C for up to two weeks. The findings of this study indicate that the developed BC/CMC/Gly/yeast composite films could be used as edible packaging material with high nutritional value and distinctive properties related to the film component, which would provide protection to foods and extend their shelf life, and thus could find applications in the food industry.

18.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065835

RESUMEN

The discovery of eco-friendly, rapid, and cost-effective compounds to control diseases caused by microbes and insects are the main challenges. Herein, the magnesium oxide nanoparticles (MgO-NPs) are successfully fabricated by harnessing the metabolites secreted by Penicillium chrysogenum. The fabricated MgO-NPs were characterized using UV-Vis, XRD, TEM, DLS, EDX, FT-IR, and XPS analyses. Data showed the successful formation of crystallographic, spherical, well-dispersed MgO-NPs with sizes of 7-40 nm at a maximum wavelength of 250 nm. The EDX analysis confirms the presence of Mg and O ions as the main components with weight percentages of 13.62% and 7.76%, respectively. The activity of MgO-NPs as an antimicrobial agent was investigated against pathogens Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, and exhibited zone of inhibitions of 12.0 ± 0.0, 12.7 ± 0.9, 23.3 ± 0.8, 17.7 ± 1.6, and 14.7 ± 0.6 mm respectively, at 200 µg mL-1. The activity is decreased by decreasing the MgO-NPs concentration. The biogenic MgO-NPs exhibit high efficacy against different larvae instar and pupa of Anopheles stephensi, with LC50 values of 12.5-15.5 ppm for I-IV larvae instar and 16.5 ppm for the pupa. Additionally, 5 mg/cm2 of MgO-NPs showed the highest protection percentages against adults of Anopheles stephensi, with values of 100% for 150 min and 67.6% ± 1.4% for 210 min.


Asunto(s)
Anopheles/efectos de los fármacos , Antiinfecciosos/farmacología , Insecticidas/farmacología , Óxido de Magnesio/farmacología , Penicillium chrysogenum/crecimiento & desarrollo , Animales , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Candida albicans/efectos de los fármacos , Cristalografía por Rayos X , Escherichia coli/efectos de los fármacos , Tecnología Química Verde , Insecticidas/química , Insecticidas/aislamiento & purificación , Larva/efectos de los fármacos , Óxido de Magnesio/química , Óxido de Magnesio/aislamiento & purificación , Metabolómica , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Penicillium chrysogenum/química , Pseudomonas aeruginosa/efectos de los fármacos , Pupa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
19.
J Fungi (Basel) ; 7(5)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068709

RESUMEN

The metabolites of the fungal strain Rhizopus oryaze were used as a biocatalyst for the green-synthesis of magnesium oxide nanoparticles (MgO-NPs). The production methodology was optimized to attain the maximum productivity as follows: 4 mM of precursor, at pH 8, incubation temperature of 35 °C, and reaction time of 36 h between metabolites and precursor. The as-formed MgO-NPs were characterized by UV-Vis spectroscopy, TEM, SEM-EDX, XRD, DLS, FT-IR, and XPS analyses. These analytical techniques proved to gain crystalline, homogenous, and well-dispersed spherical MgO-NPs with an average size of 20.38 ± 9.9 nm. The potentiality of MgO-NPs was dose- and time-dependent. The biogenic MgO-NPs was found to be a promising antimicrobial agent against the pathogens including Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans with inhibition zones of 10.6 ± 0.4, 11.5 ± 0.5, 13.7 ± 0.5, 14.3 ± 0.7, and 14.7 ± 0.6 mm, respectively, at 200 µg mL-1. Moreover, MgO-NPs manifested larvicidal and adult repellence activity against Culex pipiens at very low concentrations. The highest decolorization percentages of tanning effluents were 95.6 ± 1.6% at 100 µg/ 100 mL after 180 min. At this condition, the physicochemical parameters of tannery effluents, including TSS, TDS, BOD, COD, and conductivity were reduced with percentages of 97.9%, 98.2%, 87.8%, 95.9%, and 97.3%, respectively. Moreover, the chromium ion was adsorbed with percentages of 98.2% at optimum experimental conditions.

20.
Microorganisms ; 9(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072543

RESUMEN

Mastitis is a significant disease affecting dairy cattle farms in Egypt. The current study aimed to investigate the prevalence and major bacterial pathogens causing subclinical mastitis (SCM) in three bovine dairy herds, with a history of SCM, at three Governorates in North Upper Egypt. The antimicrobial resistance profiles and specific virulence-associated genes causing bovine SCM were investigated. One thousand sixty-quarter milk samples (QMS) were collected aseptically from 270 apparently healthy cows in three farms and examined. The total prevalence of SCM was 46% and 44.8% based on California Mastitis Test (CMT) and Somatic Cell Count (SCC), respectively. Bacteriological examination of CMT positive quarters revealed that the prevalence of bacterial isolation in subclinically mastitic quarters was 90.4% (26 and 64.3% had single and mixed isolates, respectively). The most frequent bacterial isolates were E. coli (49.8%), Staphylococcus aureus (44.9%), streptococci (44.1%) and non-aureus staphylococci (NAS) (37.1%). Antimicrobial susceptibility testing of isolates revealed a high degree of resistance to the most commonly used antimicrobial compound in human and veterinary medicine. Implementation of PCR revealed the presence of mecA and blaZ genes in 60% and 46.7% of S. aureus isolates and in 26.7% and 53.3% of NAS, respectively. Meanwhile 73.3% of streptococci isolates harbored aph(3')-IIIa gene conferring resistance to aminoglycosides and cfb gene. All E. coli isolates harbored tetA gene conferring resistance to tetracycline and sul1 gene conferring resistance to sulfonamides. The fimH and tsh genes were found in 80% and 60%, respectively. A significant association between the phenotypes and genotypes of AMR in different bacteria was recorded. The presence of a high prevalence of SCM in dairy animals impacts milk production and milk quality. The coexistence of pathogenic bacteria in milk is alarming, threatens human health and has a public health significance. Herd health improvement interventions are required to protect human health and society.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...