Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(8): e0304868, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39159151

RESUMEN

Medical image classification (IC) is a method for categorizing images according to the appropriate pathological stage. It is a crucial stage in computer-aided diagnosis (CAD) systems, which were created to help radiologists with reading and analyzing medical images as well as with the early detection of tumors and other disorders. The use of convolutional neural network (CNN) models in the medical industry has recently increased, and they achieve great results at IC, particularly in terms of high performance and robustness. The proposed method uses pre-trained models such as Dense Convolutional Network (DenseNet)-121 and Visual Geometry Group (VGG)-16 as feature extractor networks, bidirectional long short-term memory (BiLSTM) layers for temporal feature extraction, and the Support Vector Machine (SVM) and Random Forest (RF) algorithms to perform classification. For improved performance, the selected pre-trained CNN hyperparameters have been optimized using a modified grey wolf optimization method. The experimental analysis for the presented model on the Mammographic Image Analysis Society (MIAS) dataset shows that the VGG16 model is powerful for BC classification with overall accuracy, sensitivity, specificity, precision, and area under the ROC curve (AUC) of 99.86%, 99.9%, 99.7%, 97.1%, and 1.0, respectively, on the MIAS dataset and 99.4%, 99.03%, 99.2%, 97.4%, and 1.0, respectively, on the INbreast dataset.


Asunto(s)
Algoritmos , Neoplasias de la Mama , Redes Neurales de la Computación , Humanos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Mamografía/métodos , Diagnóstico por Computador/métodos , Máquina de Vectores de Soporte , Curva ROC
2.
Sci Rep ; 13(1): 14877, 2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689757

RESUMEN

Mortality from breast cancer (BC) is among the top causes of cancer death in women. BC can be effectively treated when diagnosed early, improving the likelihood that a patient will survive. BC masses and calcification clusters must be identified by mammography in order to prevent disease effects and commence therapy at an early stage. A mammography misinterpretation may result in an unnecessary biopsy of the false-positive results, lowering the patient's odds of survival. This study intends to improve breast mass detection and identification in order to provide better therapy and reduce mortality risk. A new deep-learning (DL) model based on a combination of transfer-learning (TL) and long short-term memory (LSTM) is proposed in this study to adequately facilitate the automatic detection and diagnosis of the BC suspicious region using the 80-20 method. Since DL designs are modelled to be problem-specific, TL applies the knowledge gained during the solution of one problem to another relevant problem. In the presented model, the learning features from the pre-trained networks such as the squeezeNet and DenseNet are extracted and transferred with the features that have been extracted from the INbreast dataset. To measure the proposed model performance, we selected accuracy, sensitivity, specificity, precision, and area under the ROC curve (AUC) as our metrics of choice. The classification of mammographic data using the suggested model yielded overall accuracy, sensitivity, specificity, precision, and AUC values of 99.236%, 98.8%, 99.1%, 96%, and 0.998, respectively, demonstrating the model's efficacy in detecting breast tumors.


Asunto(s)
Neoplasias de la Mama , Mamografía , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Área Bajo la Curva , Benchmarking , Redes Neurales de la Computación
3.
Sensors (Basel) ; 23(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36850816

RESUMEN

MicroRNAs (miRNA) are small, non-coding regulatory molecules whose effective alteration might result in abnormal gene manifestation in the downstream pathway of their target. miRNA gene variants can impact miRNA transcription, maturation, or target selectivity, impairing their usefulness in plant growth and stress responses. Simple Sequence Repeat (SSR) based on miRNA is a newly introduced functional marker that has recently been used in plant breeding. MicroRNA and long non-coding RNA (lncRNA) are two examples of non-coding RNA (ncRNA) that play a vital role in controlling the biological processes of animals and plants. According to recent studies, the major objective for decoding their functional activities is predicting the relationship between lncRNA and miRNA. Traditional feature-based classification systems' prediction accuracy and reliability are frequently harmed because of the small data size, human factors' limits, and huge quantity of noise. This paper proposes an optimized deep learning model built with Independently Recurrent Neural Networks (IndRNNs) and Convolutional Neural Networks (CNNs) to predict the interaction in plants between lncRNA and miRNA. The deep learning ensemble model automatically investigates the function characteristics of genetic sequences. The proposed model's main advantage is the enhanced accuracy in plant miRNA-IncRNA prediction due to optimal hyperparameter tuning, which is performed by the artificial Gorilla Troops Algorithm and the proposed intelligent preying algorithm. IndRNN is adapted to derive the representation of learned sequence dependencies and sequence features by overcoming the inaccuracies of natural factors in traditional feature architecture. Working with large-scale data, the suggested model outperforms the current deep learning model and shallow machine learning, notably for extended sequences, according to the findings of the experiments, where we obtained an accuracy of 97.7% in the proposed method.


Asunto(s)
Aprendizaje Profundo , MicroARNs , Fenómenos Fisiológicos de las Plantas , ARN Largo no Codificante , Animales , Humanos , Algoritmos , MicroARNs/genética , Reproducibilidad de los Resultados , ARN Largo no Codificante/genética , Fenómenos Fisiológicos de las Plantas/genética
4.
Sci Rep ; 10(1): 21349, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288845

RESUMEN

Reliance on deep learning techniques has become an important trend in several science domains including biological science, due to its proven efficiency in manipulating big data that are often characterized by their non-linear processes and complicated relationships. In this study, Convolutional Neural Networks (CNN) has been recruited, as one of the deep learning techniques, to be used in classifying and predicting the biological activities of the essential oil-producing plant/s through their chemical compositions. The model is established based on the available chemical composition's information of a set of endemic Egyptian plants and their biological activities. Another type of machine learning algorithms, Multiclass Neural Network (MNN), has been applied on the same Essential Oils (EO) dataset. This aims to fairly evaluate the performance of the proposed CNN model. The recorded accuracy in the testing process for both CNN and MNN is 98.13% and 81.88%, respectively. Finally, the CNN technique has been adopted as a reliable model for classifying and predicting the bioactivities of the Egyptian EO-containing plants. The overall accuracy for the final prediction process is reported as approximately 97%. Hereby, the proposed deep learning model could be utilized as an efficient model in predicting the bioactivities of, at least Egyptian, EOs-producing plants.


Asunto(s)
Aprendizaje Profundo , Aceites Volátiles/análisis , Aceites de Plantas/análisis , Algoritmos , Egipto , Redes Neurales de la Computación
5.
Adv Appl Bioinform Chem ; 10: 65-78, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28919787

RESUMEN

Day after day, the importance of relying on nature in many fields such as food, medical, pharmaceutical industries, and others is increasing. Essential oils (EOs) are considered as one of the most significant natural products for use as antimicrobials, antioxidants, antitumorals, and anti-inflammatories. Optimizing the usage of EOs is a big challenge faced by the scientific researchers because of the complexity of chemical composition of every EO, in addition to the difficulties to determine the best in inhibiting the bacterial activity. The goal of this article is to present a new computational tool based on two methodologies: reduction by using rough sets and optimization with particle swarm optimization. The developed tool dubbed as Essential Oil Reduction and Optimization Tool is applied on 24 types of EOs that have been tested toward 17 different species of bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA