Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 14(5): e0164923, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37823629

RESUMEN

IMPORTANCE: To efficiently navigate within the geomagnetic field, magnetotactic bacteria (MTB) align their magnetosome organelles into chains, which are organized by the actin-like MamK protein. Although MamK is the most highly conserved magnetosome protein common to all MTB, its analysis has been confined to a small subgroup owing to the inaccessibility of most MTB. Our study takes advantage of a genetically tractable host where expression of diverse MamK orthologs together with a resurrected MamK LUCA and uncharacterized actin-like Mad28 proteins from deep-branching MTB resulted in gradual restoration of magnetosome chains in various mutants. Our results further indicate the existence of species-specific MamK interactors and shed light on the evolutionary relationships of one of the key proteins associated with bacterial magnetotaxis.


Asunto(s)
Magnetosomas , Magnetospirillum , Actinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Magnetosomas/genética , Magnetosomas/metabolismo , Bacterias/metabolismo
2.
mBio ; 14(4): e0328222, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37318230

RESUMEN

Magnetosomes of magnetotactic bacteria (MTB) consist of structurally perfect, nano-sized magnetic crystals enclosed within vesicles of a proteo-lipid membrane. In species of Magnetospirillum, biosynthesis of their cubo-octahedral-shaped magnetosomes was recently demonstrated to be a complex process, governed by about 30 specific genes that are comprised within compact magnetosome gene clusters (MGCs). Similar, yet distinct gene clusters were also identified in diverse MTB that biomineralize magnetosome crystals with different, genetically encoded morphologies. However, since most representatives of these groups are inaccessible by genetic and biochemical approaches, their analysis will require the functional expression of magnetosome genes in foreign hosts. Here, we studied whether conserved essential magnetosome genes from closely and remotely related MTB can be functionally expressed by rescue of their respective mutants in the tractable model Magnetospirillum gryphiswaldense of the Alphaproteobacteria. Upon chromosomal integration, single orthologues from other magnetotactic Alphaproteobacteria restored magnetosome biosynthesis to different degrees, while orthologues from distantly related Magnetococcia and Deltaproteobacteria were found to be expressed but failed to re-induce magnetosome biosynthesis, possibly due to poor interaction with their cognate partners within multiprotein magnetosome organelle of the host. Indeed, co-expression of the known interactors MamB and MamM from the alphaproteobacterium Magnetovibrio blakemorei increased functional complementation. Furthermore, a compact and portable version of the entire MGCs of M. magneticum was assembled by transformation-associated recombination cloning, and it restored the ability to biomineralize magnetite both in deletion mutants of the native donor and M. gryphiswaldense, while co-expression of gene clusters from both M. gryphiswaldense and M. magneticum resulted in overproduction of magnetosomes. IMPORTANCE We provide proof of principle that Magnetospirillum gryphiswaldense is a suitable surrogate host for the functional expression of foreign magnetosome genes and extended the transformation-associated recombination cloning platform for the assembly of entire large magnetosome gene cluster, which could then be transplanted to different magnetotactic bacteria. The reconstruction, transfer, and analysis of gene sets or entire magnetosome clusters will be also promising for engineering the biomineralization of magnetite crystals with different morphologies that would be valuable for biotechnical applications.

3.
mBio ; 12(3)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006654

RESUMEN

Genomic information from various magnetotactic bacteria suggested that besides their common ability to form magnetosomes, they potentially also represent a source of bioactive natural products. By using targeted deletion and transcriptional activation, we connected a large biosynthetic gene cluster (BGC) of the trans-acyltransferase polyketide synthase (trans-AT PKS) type to the biosynthesis of a novel polyketide in the alphaproteobacterium Magnetospirillum gryphiswaldense Structure elucidation by mass spectrometry and nuclear magnetic resonance spectroscopy (NMR) revealed that this secondary metabolite resembles sesbanimides, which were very recently reported from other taxa. However, sesbanimide R exhibits an additional arginine moiety the presence of which reconciles inconsistencies in the previously proposed sesbanimide biosynthesis pathway observed when comparing the chemical structure and the potential biochemistry encoded in the BGC. In contrast to the case with sesbanimides D, E, and F, we were able to assign the stereocenter of the arginine moiety experimentally and two of the remaining three stereocenters by predictive biosynthetic tools. Sesbanimide R displayed strong cytotoxic activity against several carcinoma cell lines.IMPORTANCE The findings of this study contribute a new secondary metabolite member to the glutarimide-containing polyketides. The determined structure of sesbanimide R correlates with its cytotoxic bioactivity, characteristic for members of this family. Sesbanimide R represents the first natural product isolated from magnetotactic bacteria and identifies this highly diverse group as a so-far-untapped source for the future discovery of novel secondary metabolites.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Vías Biosintéticas , Magnetospirillum/metabolismo , Policétidos/metabolismo , Metabolismo Secundario , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Productos Biológicos/metabolismo , Filogenia
4.
Proc Natl Acad Sci U S A ; 117(50): 32086-32097, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257551

RESUMEN

Magnetotactic bacteria maneuver within the geomagnetic field by means of intracellular magnetic organelles, magnetosomes, which are aligned into a chain and positioned at midcell by a dedicated magnetosome-specific cytoskeleton, the "magnetoskeleton." However, how magnetosome chain organization and resulting magnetotaxis is linked to cell shape has remained elusive. Here, we describe the cytoskeletal determinant CcfM (curvature-inducing coiled-coil filament interacting with the magnetoskeleton), which links the magnetoskeleton to cell morphology regulation in Magnetospirillum gryphiswaldense Membrane-anchored CcfM localizes in a filamentous pattern along regions of inner positive-cell curvature by its coiled-coil motifs, and independent of the magnetoskeleton. CcfM overexpression causes additional circumferential localization patterns, associated with a dramatic increase in cell curvature, and magnetosome chain mislocalization or complete chain disruption. In contrast, deletion of ccfM results in decreased cell curvature, impaired cell division, and predominant formation of shorter, doubled chains of magnetosomes. Pleiotropic effects of CcfM on magnetosome chain organization and cell morphology are supported by the finding that CcfM interacts with the magnetoskeleton-related MamY and the actin-like MamK via distinct motifs, and with the cell shape-related cytoskeleton via MreB. We further demonstrate that CcfM promotes motility and magnetic alignment in structured environments, and thus likely confers a selective advantage in natural habitats of magnetotactic bacteria, such as aquatic sediments. Overall, we unravel the function of a prokaryotic cytoskeletal constituent that is widespread in magnetic and nonmagnetic spirilla-shaped Alphaproteobacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Magnetosomas/metabolismo , Magnetospirillum/citología , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , División Celular , Microscopía por Crioelectrón , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/ultraestructura , Citoesqueleto/genética , Citoesqueleto/ultraestructura , Tomografía con Microscopio Electrónico , Magnetosomas/ultraestructura , Magnetospirillum/metabolismo , Magnetospirillum/ultraestructura , Microscopía Electrónica de Transmisión
5.
mSystems ; 5(6)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203687

RESUMEN

Magnetotactic bacteria (MTB) stand out by their ability to manufacture membrane-enclosed magnetic organelles, so-called magnetosomes. Previously, it has been assumed that a genomic region of approximately 100 kbp, the magnetosome island (MAI), harbors all genetic determinants required for this intricate biosynthesis process. Recent evidence, however, argues for the involvement of additional auxiliary genes that have not been identified yet. In the present study, we set out to delineate the full gene complement required for magnetosome production in the alphaproteobacterium Magnetospirillum gryphiswaldense using a systematic genome-wide transposon mutagenesis approach. By an optimized procedure, a Tn5 insertion library of 80,000 clones was generated and screened, yielding close to 200 insertants with mild to severe impairment of magnetosome biosynthesis. Approximately 50% of all Tn5 insertion sites mapped within the MAI, mostly leading to a nonmagnetic phenotype. In contrast, in the majority of weakly magnetic Tn5 insertion mutants, genes outside the MAI were affected, which typically caused lower numbers of magnetite crystals with partly aberrant morphology, occasionally combined with deviant intracellular localization. While some of the Tn5-struck genes outside the MAI belong to pathways that have been linked to magnetosome formation before (e.g., aerobic and anaerobic respiration), the majority of affected genes are involved in so far unsuspected cellular processes, such as sulfate assimilation, oxidative protein folding, and cytochrome c maturation, or are altogether of unknown function. We also found that signal transduction and redox functions are enriched in the set of Tn5 hits outside the MAI, suggesting that such processes are particularly important in support of magnetosome biosynthesis.IMPORTANCE Magnetospirillum gryphiswaldense is one of the few tractable model magnetotactic bacteria (MTB) for studying magnetosome biomineralization. So far, knowledge on the genetic determinants of this complex process has been mainly gathered using reverse genetics and candidate approaches. In contrast, nontargeted forward genetics studies are lacking, since application of such techniques in MTB has been complicated for a number of technical reasons. Here, we report on the first comprehensive transposon mutagenesis study in MTB, aiming at systematic identification of auxiliary genes necessary to support magnetosome formation in addition to key genes harbored in the magnetosome island (MAI). Our work considerably extends the candidate set of novel subsidiary determinants and shows that the full gene complement underlying magnetosome biosynthesis is larger than assumed. In particular, we were able to define certain cellular pathways as specifically important for magnetosome formation that have not been implicated in this process so far.

6.
mBio ; 10(1)2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755513

RESUMEN

Self-recognition underlies sociality in many group-living organisms. In bacteria, cells use various strategies to recognize kin to form social groups and, in some cases, to transition into multicellular life. One strategy relies on a single genetic locus that encodes a variable phenotypic tag ("greenbeard") for recognizing other tag bearers. Previously, we discovered a polymorphic cell surface receptor called TraA that directs self-identification through homotypic interactions in the social bacterium Myxococcus xanthus Recognition by TraA leads to cellular resource sharing in a process called outer membrane exchange (OME). A second gene in the traA operon, traB, is also required for OME but is not involved in recognition. Our prior studies of TraA identified only six recognition groups among closely related M. xanthus isolates. Here we hypothesize that the number of traA polymorphisms and, consequently, the diversity of recognition in wild isolates are much greater. To test this hypothesis, we expand the scope of TraA characterization to the order Myxococcales From genomic sequences within the three suborders of Myxococcales, we identified 90 traA orthologs. Sequence analyses and functional characterization of traAB loci suggest that OME is well maintained among diverse myxobacterial taxonomic groups. Importantly, TraA orthologs are highly polymorphic within their variable domain, the region that confers selectivity in self-recognition. We experimentally defined 10 distinct recognition groups and, based on phylogenetic and experimental analyses, predicted >60 recognition groups among the 90 traA alleles. Taken together, our findings revealed a widespread greenbeard locus that mediates the diversity of self-recognition across the order MyxococcalesIMPORTANCE Many biological species distinguish self from nonself by using different mechanisms. Higher animals recognize close kin via complex processes that often involve the five senses, cognition, and learning, whereas some microbes achieve self-recognition simply through the activity of a single genetic locus. Here we describe a single locus, traA, in myxobacteria that governs cell-cell recognition within natural populations. We found that traA is widespread across the order Myxococcales TraA is highly polymorphic among diverse myxobacterial isolates, and such polymorphisms determine selectivity in self-recognition. Through bioinformatic and experimental analyses, we showed that traA governs many distinct recognition groups within Myxococcales This report provides an example in which a single locus influences social recognition across a wide phylogenetic range of natural populations.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Interacciones Microbianas , Myxococcales/fisiología , Polimorfismo Genético , Proteínas de la Membrana Bacteriana Externa/genética , Biología Computacional , Minería de Datos , Genoma Bacteriano , Myxococcales/genética , Homología de Secuencia
7.
Int J Syst Evol Microbiol ; 67(5): 1422-1430, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28141508

RESUMEN

Bacterial strains MCy10943T and MCy10944T were isolated in 2014 from dried Nepalese soil samples collected in 2013 from Phukot, Kalikot, Western Nepal, and Godawari, Lalitpur, Central Nepal. The novel organisms showed typical myxobacterial growth characteristics, which include swarming colony and fruiting body formation on solid surfaces, and a predatory ability to lyse micro-organisms. The strains were aerobic, mesophilic, chemoheterotrophic and showed resistance to various antibiotics. The major cellular fatty acids common to both organisms were C17 : 0 2-OH, iso-C15 : 0, C16 : 1 and iso-C17 : 0. The G+C content of the genomic DNA was 72-75 mol%. Phylogenetic analysis showed that the strains belong to the family Cystobacteraceae, suborder Cystobacterineae, order Myxococcales. The 16S rRNA gene sequences of both strains showed 97-98 % similarity to Archangium gephyra DSM 2261T andCystobacter violaceus DSM 14727T, and 96.7-97 % to Cystobacter fuscus DSM 2262T and Angiococcus disciformis DSM 52716T. Polyphasic taxonomic characterization suggested that strains MCy10943T and MCy10944T represent two distinct species of a new genus, for which the names Vitiosangium cumulatum gen. nov., sp. nov. and Vitiosangium subalbum sp. nov. are proposed. The type strain of Vitiosangium cumulatum is MCy10943T (=DSM 102952T=NCCB 100600T) while that for Vitiosangium subalbum is MCy10944T (=DSM 102953T=NCCB 100601T). In addition, emended descriptions of the genera Archangium and Angiococcus, and of the family Cystobacteraceaeare provided.


Asunto(s)
Myxococcales/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/química , Myxococcales/genética , Myxococcales/aislamiento & purificación , Nepal , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
Int J Syst Evol Microbiol ; 67(2): 472-478, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27902273

RESUMEN

A novel myxobacterium, strain MSr11462T, was isolated in 2015 from a soil sample collected form Kish Island beach, Persian Gulf, Iran. It displayed general myxobacterial features like Gram-negative staining, rod-shaped vegetative cells, gliding on solid surfaces, microbial lytic activity, fruiting-body-like aggregates and myxospore-like structures. The strain was mesophilic, aerobic and showed a chemoheterotrophic mode of nutrition. It was resistant to many antibiotics like gentamycin, polymyxin, fusidic acid and trimethoprim, and the key fatty acids of whole-cell hydrolysates were iso-C15 : 0, C16 : 0, iso-C17 : 0, C18 : 1, iso-C17 : 1 2-OH, C18 : 1 2-OH, iso-C15 : 0 OAG (O-alkylglycerol) and C16 : 1 OAG. The 16S rRNA gene sequence showed highest similarity (98.6 %) to Racemicystis crocea strain MSr9521T (GenBank accession no. KT591707). The phylogenetic analysis based on 16S rRNA gene sequences and matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) spectroscopy data supports a novel species of the family Polyangiaceae and the genus Racemicystis. DNA-DNA hybridization showed only about 50 % similarity between the novel strain and the phylogenetically closest species, Racemicystis. crocea MSr9521T. On the basis of a comprehensive taxonomic study, we propose a novel species, Racemicystis persica sp. nov., for strain MSr11462T (=DSM 103165T=NCCB 100606T).


Asunto(s)
Myxococcales/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Irán , Islas , Myxococcales/genética , Myxococcales/aislamiento & purificación , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Int J Syst Evol Microbiol ; 66(6): 2389-2395, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27046779

RESUMEN

A novel bacterial strain designated MSr9521T was isolated in 2014 from a soil sample collected in 1986 from the Philippines. The novel bacterium shows myxobacterial characteristics that include pseudoplasmodial swarming, fruiting body formation and predatory ability to lyse microorganisms. The strain is chemoheterotrophic, mesophilic and aerobic. Major fatty acids are C18:1, C17:1 2-OH and iso-C15:0, and also contains trace amounts of omega-3/-6 polyunsaturated fatty acids. The G+C content of the genomic DNA is 70.4 mol%. The 16S rRNA gene sequence shows 95-96 % closest similarity to Sorangium cellulosum DSM 14627T, Polyangium fumosum Pl fu5T, Jahnella thaxteri Pl t4T and Byssovorax cruenta By c2T. The molecular phylogenetic analysis shows that the novel isolate forms a novel branch in the family Polyangiaceae, suborder Sorangiineae. Polyphasic taxonomic characterization suggests that the strain MSr9521T represents a novel species of a new genus in the family Polyangiaceae, for which the name Racemicystis crocea gen. nov., sp. nov. is proposed. The type strain of Racemicystis crocea is MSr9521T (=DSM 100773T=NCCB 100574T).


Asunto(s)
Myxococcales/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Myxococcales/genética , Myxococcales/aislamiento & purificación , Filipinas , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
Int J Syst Evol Microbiol ; 65(Pt 3): 745-753, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24591423

RESUMEN

A novel myxobacterium, MCy1366(T) (Ar1733), was isolated in 1981 from a soil sample collected from a region near Tokyo, Japan. It displayed general myxobacterial features like Gram-negative-staining, rod-shaped vegetative cells, gliding on solid surfaces, microbial lytic activity, fruiting-body-like aggregates and myxospore-like structures. The strain was mesophilic, aerobic and showed a chemoheterotrophic mode of nutrition. It was resistant to many antibiotics such as cephalosporin C, kanamycin, gentamicin, hygromycin B, polymyxin and bacitracin, and the key fatty acids of whole cell hydrolysates were iso-C15 : 0, iso-C17 : 0 and iso-C17 : 0 2-OH. The genomic DNA G+C content of the novel strain was 65.6 mol%. The 16S rRNA gene sequence showed highest similarity (97.60 %) to 'Stigmatella koreensis' strain KYC-1019 (GenBank accession no. EF112185). Phylogenetic analysis based on 16S rRNA gene sequences and MALDI-TOF MS data revealed a novel branch in the family Myxococcaceae. DNA-DNA hybridization showed only 28 % relatedness between the novel strain and the closest recognized species, Corallococcus exiguus DSM 14696(T) (97 % 16S rRNA gene sequence similarity). A recent isolate from a soil sample collected in Switzerland, MCy10622, displayed 99.9 % 16S rRNA gene sequence similarity with strain MCy1366(T) and showed almost the same characteristics. Since some morphological features like fruiting-body-like aggregates were barely reproducible in the type strain, the newly isolated strain, MCy10622, was also intensively studied. On the basis of a comprehensive taxonomic study, we propose a novel genus and species, Aggregicoccus edonensis gen. nov., sp. nov., for strains MCy1366(T) and MCy10622. The type strain of the type species is MCy1366(T) ( = DSM 27872(T) = NCCB 100468(T)).


Asunto(s)
Myxococcales/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Datos de Secuencia Molecular , Myxococcales/genética , Myxococcales/aislamiento & purificación , Hibridación de Ácido Nucleico , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...