Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 383, 2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611081

RESUMEN

Acoustic communication signals diversify even on short evolutionary time scales. To understand how the auditory system underlying acoustic communication could evolve, we conducted a systematic comparison of the early stages of the auditory neural circuit involved in song information processing between closely-related fruit-fly species. Male Drosophila melanogaster and D. simulans produce different sound signals during mating rituals, known as courtship songs. Female flies from these species selectively increase their receptivity when they hear songs with conspecific temporal patterns. Here, we firstly confirmed interspecific differences in temporal pattern preferences; D. simulans preferred pulse songs with longer intervals than D. melanogaster. Primary and secondary song-relay neurons, JO neurons and AMMC-B1 neurons, shared similar morphology and neurotransmitters between species. The temporal pattern preferences of AMMC-B1 neurons were also relatively similar between species, with slight but significant differences in their band-pass properties. Although the shift direction of the response property matched that of the behavior, these differences are not large enough to explain behavioral differences in song preferences. This study enhances our understanding of the conservation and diversification of the architecture of the early-stage neural circuit which processes acoustic communication signals.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Masculino , Femenino , Drosophila/fisiología , Drosophila melanogaster/fisiología , Cortejo , Evolución Biológica , Neuronas , Drosophila simulans , Conducta Sexual Animal/fisiología , Vocalización Animal/fisiología
2.
Sci Rep ; 12(1): 12692, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35879333

RESUMEN

Temperature is one of the most critical environmental factors that influence various biological processes. Species distributed in different temperature regions are considered to have different optimal temperatures for daily life activities. However, how organisms have acquired various features to cope with particular temperature environments remains to be elucidated. In this study, we have systematically analyzed the temperature preference behavior and effects of temperatures on daily locomotor activity and sleep using 11 Drosophila species. We also investigated the function of antennae in the temperature preference behavior of these species. We found that, (1) an optimal temperature for daily locomotor activity and sleep of each species approximately matches with temperatures it frequently encounters in its habitat, (2) effects of temperature on locomotor activity and sleep are diverse among species, but each species maintains its daily activity and sleep pattern even at different temperatures, and (3) each species has a unique temperature preference behavior, and the contribution of antennae to this behavior is diverse among species. These results suggest that Drosophila species inhabiting different climatic environments have acquired species-specific temperature response systems according to their life strategies. This study provides fundamental information for understanding the mechanisms underlying their temperature adaptation and lifestyle diversification.


Asunto(s)
Proteínas de Drosophila , Drosophila , Aclimatación , Animales , Drosophila/fisiología , Locomoción/fisiología , Temperatura
3.
Development ; 147(5)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32051172

RESUMEN

Neural remodeling is essential for the development of a functional nervous system and has been extensively studied in the metamorphosis of Drosophila Despite the crucial roles of glial cells in brain functions, including learning and behavior, little is known of how adult glial cells develop in the context of neural remodeling. Here, we show that the architecture of neuropil-glia in the adult Drosophila brain, which is composed of astrocyte-like glia (ALG) and ensheathing glia (EG), robustly develops from two different populations in the larva: the larval EG and glial cell missing-positive (gcm+ ) cells. Whereas gcm+ cells proliferate and generate adult ALG and EG, larval EG dedifferentiate, proliferate and redifferentiate into the same glial subtypes. Each glial lineage occupies a certain brain area complementary to the other, and together they form the adult neuropil-glia architecture. Both lineages require the FGF receptor Heartless to proliferate, and the homeoprotein Prospero to differentiate into ALG. Lineage-specific inhibition of gliogenesis revealed that each lineage compensates for deficiency in the proliferation of the other. Together, the lineages ensure the robust development of adult neuropil-glia, thereby ensuring a functional brain.


Asunto(s)
Astrocitos/citología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Neurópilo/citología , Proteínas Nucleares/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Transcripción/metabolismo , Animales , Encéfalo/citología , Encéfalo/embriología , Linaje de la Célula/fisiología , Proliferación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/metabolismo , Metamorfosis Biológica/genética , Metamorfosis Biológica/fisiología , Neurogénesis/genética
4.
Development ; 145(11)2018 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-29764857

RESUMEN

Macroglial cells in the central nervous system exhibit regional specialization and carry out region-specific functions. Diverse glial cells arise from specific progenitors in specific spatiotemporal patterns. This raises an interesting possibility that glial precursors with distinct developmental fates exist that govern region-specific gliogenesis. Here, we have mapped the glial progeny produced by the Drosophila type II neuroblasts, which, like vertebrate radial glia cells, yield both neurons and glia via intermediate neural progenitors (INPs). Distinct type II neuroblasts produce different characteristic sets of glia. A single INP can make both astrocyte-like and ensheathing glia, which co-occupy a relatively restrictive subdomain. Blocking apoptosis uncovers further lineage distinctions in the specification, proliferation and survival of glial precursors. Both the switch from neurogenesis to gliogenesis and the subsequent glial expansion depend on Notch signaling. Taken together, lineage origins preconfigure the development of individual glial precursors with involvement of serial Notch actions in promoting gliogenesis.


Asunto(s)
Encéfalo/embriología , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Células-Madre Neurales/citología , Neurogénesis/fisiología , Receptores Notch/metabolismo , Animales , Apoptosis/fisiología , Astrocitos/citología , Encéfalo/citología , Linaje de la Célula/fisiología , Proliferación Celular/fisiología , Neuronas/citología
5.
G3 (Bethesda) ; 8(7): 2421-2431, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29773558

RESUMEN

ELYS determines the subcellular localizations of Nucleoporins (Nups) during interphase and mitosis. We made loss-of-function mutations of Elys in Drosophila melanogaster and found that ELYS is dispensable for zygotic viability and male fertility but the maternal supply is necessary for embryonic development. Subsequent to fertilization, mitotic progression of the embryos produced by the mutant females is severely disrupted at the first cleavage division, accompanied by irregular behavior of mitotic centrosomes. The Nup160 introgression from D. simulans shows close resemblance to that of the Elys mutations, suggesting a common role for those proteins in the first cleavage division. Our genetic experiments indicated critical interactions between ELYS and three Nup107-160 subcomplex components; hemizygotes of either Nup37, Nup96 or Nup160 were lethal in the genetic background of the Elys mutation. Not only Nup96 and Nup160 but also Nup37 of D. simulans behave as recessive hybrid incompatibility genes with D. melanogaster An evolutionary analysis indicated positive natural selection in the ELYS-like domain of ELYS. Here we propose that genetic incompatibility between Elys and Nups may lead to reproductive isolation between D. melanogaster and D. simulans, although direct evidence is necessary.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Epistasis Genética , Genes Letales , Herencia Materna , Mutación , Proteínas de Complejo Poro Nuclear/genética , Animales , Cruzamientos Genéticos , Evolución Molecular , Femenino , Genotipo , Mutación con Pérdida de Función , Masculino , Mitosis/genética , Fenotipo , Mutaciones Letales Sintéticas
6.
Genes Genet Syst ; 92(6): 277-285, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29151455

RESUMEN

The development of transgenesis systems in non-model organisms provides a powerful tool for molecular analysis and contributes to the understanding of phenomena that are not observed in model organisms. Drosophila prolongata is a fruit fly that has unique morphology and behavior not found in other Drosophila species including D. melanogaster. In this study, we developed a phiC31 integrase-mediated transgenesis system for D. prolongata. First, using piggyBac-mediated transgenesis, 37 homozygous attP strains were established. These strains were further transformed with the nosP-Cas9 vector, which was originally designed for phiC31-mediated transgenesis in D. melanogaster. The transformation rate varied from 0% to 3.4%. Nine strains with a high transformation rate of above 2.0% were established, which will serve as host strains in future transformation experiments in D. prolongata. Our results demonstrate that genetic tools developed for D. melanogaster are applicable to D. prolongata with minimal modifications.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Integrasas/genética , Animales , Animales Modificados Genéticamente , Drosophila/enzimología , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Técnicas de Transferencia de Gen , Integrasas/metabolismo , Transformación Genética
7.
Curr Biol ; 26(19): 2583-2593, 2016 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-27618265

RESUMEN

The morphology and physiology of neurons are directed by developmental decisions made within their lines of descent from single stem cells. Distinct stem cells may produce neurons having shared properties that define their cell class, such as the type of secreted neurotransmitter. The relationship between cell class and lineage is complex. Here we developed the transgenic cell class-lineage intersection (CLIn) system to assign cells of a particular class to specific lineages within the Drosophila brain. CLIn also enables birth-order analysis and genetic manipulation of particular cell classes arising from particular lineages. We demonstrated the power of CLIn in the context of the eight central brain type II lineages, which produce highly diverse progeny through intermediate neural progenitors. We mapped 18 dopaminergic neurons from three distinct clusters to six type II lineages that show lineage-characteristic neurite trajectories. In addition, morphologically distinct dopaminergic neurons are produced within a given lineage, and they arise in an invariant sequence. We also identified type II lineages that produce doublesex- and fruitless-expressing neurons and examined whether female-specific apoptosis in these lineages accounts for the lower number of these neurons in the female brain. Blocking apoptosis in these lineages resulted in more cells in both sexes with males still carrying more cells than females. This argues that sex-specific stem cell fate together with differential progeny apoptosis contribute to the final sexual dimorphism.


Asunto(s)
Encéfalo/fisiología , Linaje de la Célula , Drosophila melanogaster/fisiología , Animales , Animales Modificados Genéticamente , Apoptosis , Encéfalo/crecimiento & desarrollo , Drosophila melanogaster/crecimiento & desarrollo , Femenino , Masculino , Caracteres Sexuales
9.
Artículo en Inglés | MEDLINE | ID: mdl-24782716

RESUMEN

Inhibition has a central role in defining the selectivity of the responses of higher order neurons to sensory stimuli. However, the circuit mechanisms of regulation of these responses by inhibitory neurons are still unclear. In Drosophila, the mushroom bodies (MBs) are necessary for olfactory memory, and by implication for the selectivity of learned responses to specific odors. To understand the circuitry of inhibition in the calyx (the input dendritic region) of the MBs, and its relationship with MB excitatory activity, we used the simple anatomy of the Drosophila larval olfactory system to identify any inhibitory inputs that could contribute to the selectivity of MB odor responses. We found that a single neuron accounts for all detectable GABA innervation in the calyx of the MBs, and that this neuron has pre-synaptic terminals in the calyx and post-synaptic branches in the MB lobes (output axonal area). We call this neuron the larval anterior paired lateral (APL) neuron, because of its similarity to the previously described adult APL neuron. Reconstitution of GFP partners (GRASP) suggests that the larval APL makes extensive contacts with the MB intrinsic neurons, Kenyon Cells (KCs), but few contacts with incoming projection neurons (PNs). Using calcium imaging of neuronal activity in live larvae, we show that the larval APL responds to odors, in a manner that requires output from KCs. Our data suggest that the larval APL is the sole GABAergic neuron that innervates the MB input region and carries inhibitory feedback from the MB output region, consistent with a role in modulating the olfactory selectivity of MB neurons.


Asunto(s)
Neuronas GABAérgicas/fisiología , Larva/fisiología , Cuerpos Pedunculados/fisiología , Odorantes , Percepción Olfatoria/fisiología , Olfato/fisiología , Animales , Discriminación en Psicología/fisiología , Drosophila/fisiología , Aprendizaje/fisiología , Memoria/fisiología
10.
Nat Neurosci ; 17(4): 631-7, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24561995

RESUMEN

The Drosophila cerebrum originates from about 100 neuroblasts per hemisphere, with each neuroblast producing a characteristic set of neurons. Neurons from a neuroblast are often so diverse that many neuron types remain unexplored. We developed new genetic tools that target neuroblasts and their diverse descendants, increasing our ability to study fly brain structure and development. Common enhancer-based drivers label neurons on the basis of terminal identities rather than origins, which provides limited labeling in the heterogeneous neuronal lineages. We successfully converted conventional drivers that are temporarily expressed in neuroblasts, into drivers expressed in all subsequent neuroblast progeny. One technique involves immortalizing GAL4 expression in neuroblasts and their descendants. Another depends on loss of the GAL4 repressor, GAL80, from neuroblasts during early neurogenesis. Furthermore, we expanded the diversity of MARCM-based reagents and established another site-specific mitotic recombination system. Our transgenic tools can be combined to map individual neurons in specific lineages of various genotypes.


Asunto(s)
Linaje de la Célula , Cerebro/citología , Proteínas de Drosophila , Drosophila/citología , Técnicas Genéticas , Células-Madre Neurales/citología , Animales , Linaje de la Célula/fisiología , Cerebro/fisiología , Drosophila/fisiología , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Receptores Notch/biosíntesis , Receptores Notch/genética , Recombinación Genética , Transgenes
11.
J Comp Neurol ; 521(12): 2645-Spc1, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23696496

RESUMEN

The Drosophila central brain develops from a fixed number of neuroblasts. Each neuroblast makes a clone of neurons that exhibit common trajectories. Here we identified 15 distinct clones that carry larval-born neurons innervating the Drosophila central complex (CX), which consists of four midline structures including the protocerebral bridge (PB), fan-shaped body (FB), ellipsoid body (EB), and noduli (NO). Clonal analysis revealed that the small-field CX neurons, which establish intricate projections across different CX substructures, exist in four isomorphic groups that respectively derive from four complex posterior asense-negative lineages. In terms of the region-characteristic large-field CX neurons, we found that two lineages make PB neurons, 10 lineages produce FB neurons, three lineages generate EB neurons, and two lineages yield NO neurons. The diverse FB developmental origins reflect the discrete input pathways for different FB subcompartments. Clonal analysis enlightens both development and anatomy of the insect locomotor control center.


Asunto(s)
Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Locomoción/fisiología , Red Nerviosa/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Antígenos CD8/metabolismo , Linaje de la Célula/fisiología , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Red Nerviosa/metabolismo , Neuronas/citología
12.
Curr Biol ; 23(8): 633-43, 2013 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-23541733

RESUMEN

BACKGROUND: The insect brain can be divided into neuropils that are formed by neurites of both local and remote origin. The complexity of the interconnections obscures how these neuropils are established and interconnected through development. The Drosophila central brain develops from a fixed number of neuroblasts (NBs) that deposit neurons in regional clusters. RESULTS: By determining individual NB clones and pursuing their projections into specific neuropils, we unravel the regional development of the brain neural network. Exhaustive clonal analysis revealed 95 stereotyped neuronal lineages with characteristic cell-body locations and neurite trajectories. Most clones show complex projection patterns, but despite the complexity, neighboring clones often coinnervate the same local neuropil or neuropils and further target a restricted set of distant neuropils. CONCLUSIONS: These observations argue for regional clonal development of both neuropils and neuropil connectivity throughout the Drosophila central brain.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Linaje de la Célula , Células Clonales/citología , Células Clonales/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Femenino , Larva/citología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Masculino , Microscopía Confocal , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurópilo/citología , Neurópilo/metabolismo
14.
Dev Dyn ; 241(1): 169-89, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22174086

RESUMEN

BACKGROUND: Phylogenetic footprinting has revealed that cis-regulatory enhancers consist of conserved DNA sequence clusters (CSCs). Currently, there is no systematic approach for enhancer discovery and analysis that takes full-advantage of the sequence information within enhancer CSCs. RESULTS: We have generated a Drosophila genome-wide database of conserved DNA consisting of >100,000 CSCs derived from EvoPrints spanning over 90% of the genome. cis-Decoder database search and alignment algorithms enable the discovery of functionally related enhancers. The program first identifies conserved repeat elements within an input enhancer and then searches the database for CSCs that score highly against the input CSC. Scoring is based on shared repeats as well as uniquely shared matches, and includes measures of the balance of shared elements, a diagnostic that has proven to be useful in predicting cis-regulatory function. To demonstrate the utility of these tools, a temporally-restricted CNS neuroblast enhancer was used to identify other functionally related enhancers and analyze their structural organization. CONCLUSIONS: cis-Decoder reveals that co-regulating enhancers consist of combinations of overlapping shared sequence elements, providing insights into the mode of integration of multiple regulating transcription factors. The database and accompanying algorithms should prove useful in the discovery and analysis of enhancers involved in any developmental process.


Asunto(s)
Bases de Datos Genéticas , Drosophila melanogaster/genética , Elementos de Facilitación Genéticos , Genoma de los Insectos , Algoritmos , Animales , Secuencia de Bases , Biología Computacional/métodos , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , Transgenes
15.
Nat Neurosci ; 14(7): 821-3, 2011 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-21685919

RESUMEN

We found that glia secrete myoglianin, a TGF-ß ligand, to instruct developmental neural remodeling in Drosophila. Glial myoglianin upregulated neuronal expression of an ecdysone nuclear receptor that triggered neurite remodeling following the late-larval ecdysone peak. Thus glia orchestrate developmental neural remodeling not only by engulfment of unwanted neurites but also by enabling neuron remodeling.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Neurológicos , Cuerpos Pedunculados/citología , Neuroglía/fisiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , MicroARNs/genética , MicroARNs/metabolismo , Cuerpos Pedunculados/crecimiento & desarrollo , Mutación/genética , Neurogénesis/genética , ARN Bicatenario/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética
16.
Glia ; 59(9): 1377-86, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21305614

RESUMEN

Because of its genetic, molecular, and behavioral tractability, Drosophila has emerged as a powerful model system for studying molecular and cellular mechanisms underlying the development and function of nervous systems. The Drosophila nervous system has fewer neurons and exhibits a lower glia:neuron ratio than is seen in vertebrate nervous systems. Despite the simplicity of the Drosophila nervous system, glial organization in flies is as sophisticated as it is in vertebrates. Furthermore, fly glial cells play vital roles in neural development and behavior. In addition, powerful genetic tools are continuously being created to explore cell function in vivo. In taking advantage of these features, the fly nervous system serves as an excellent model system to study general aspects of glial cell development and function in vivo. In this article, we review and discuss advanced genetic tools that are potentially useful for understanding glial cell biology in Drosophila.


Asunto(s)
Biología Celular/instrumentación , Drosophila/fisiología , Biología Molecular/instrumentación , Biología Molecular/métodos , Neuroglía/fisiología , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Expresión Génica/genética , Expresión Génica/fisiología , Genes Reporteros , Mutación/fisiología , Factores de Transcripción/genética , Transgenes , Factores Estimuladores hacia 5'
17.
Development ; 138(5): 983-93, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21303851

RESUMEN

The Drosophila optic lobe comprises a wide variety of neurons, which form laminar neuropiles with columnar units and topographic projections from the retina. The Drosophila optic lobe shares many structural characteristics with mammalian visual systems. However, little is known about the developmental mechanisms that produce neuronal diversity and organize the circuits in the primary region of the optic lobe, the medulla. Here, we describe the key features of the developing medulla and report novel phenomena that could accelerate our understanding of the Drosophila visual system. The identities of medulla neurons are pre-determined in the larval medulla primordium, which is subdivided into concentric zones characterized by the expression of four transcription factors: Drifter, Runt, Homothorax and Brain-specific homeobox (Bsh). The expression pattern of these factors correlates with the order of neuron production. Once the concentric zones are specified, the distribution of medulla neurons changes rapidly. Each type of medulla neuron exhibits an extensive but defined pattern of migration during pupal development. The results of clonal analysis suggest homothorax is required to specify the neuronal type by regulating various targets including Bsh and cell-adhesion molecules such as N-cadherin, while drifter regulates a subset of morphological features of Drifter-positive neurons. Thus, genes that show the concentric zones may form a genetic hierarchy to establish neuronal circuits in the medulla.


Asunto(s)
Movimiento Celular , Ojo/embriología , Neuronas/fisiología , Animales , Axones , Dendritas , Drosophila/embriología , Retina
19.
Gene Expr Patterns ; 10(7-8): 328-37, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20659588

RESUMEN

The first and secondary olfactory centers in the olfactory pathway in Drosophila are organized into neuropil structures called glomeruli. The antennal lobe (AL), the first olfactory center in larval Drosophila, is organized in 21 glomeruli. Each AL glomerulus receives innervation from a specific olfactory sensory neuron (OSN), and is therefore identifiable anatomically by the position of the OSN terminal. Olfactory projection neurons (PNs) send a dendrite to a single AL glomerulus and an axon that usually terminates in a single glomerulus in the mushroom body (MB) calyx, a secondary olfactory center, and in the lateral horn. By random labeling of single PNs that express GH146-GAL4, it was previously shown that PNs stereotypically innervate specific AL and calyx glomeruli, and most of these connections have been mapped. Here we report the pattern of innervation of GAL4 lines that drive expression of reporter genes in single or a few PNs, including PNs not identified by the widely used GH146-GAL4 driver. We have mapped the AL and calyx glomeruli innervated by these labeled PNs. This study provides a collection of GAL4 lines to molecularly mark the connections between specific AL and calyx glomeruli. It thus confirms and extends the previous map of AL-calyx connectivity that was based only on randomly labeled single PNs, and provides tools for targeted manipulation of specific PNs for developmental and functional studies.


Asunto(s)
Proteínas de Unión al ADN/genética , Drosophila/crecimiento & desarrollo , Drosophila/genética , Genes Reporteros , Cuerpos Pedunculados/inervación , Neuronas/metabolismo , Vías Olfatorias , Neuronas Receptoras Olfatorias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Animales , Antenas de Artrópodos/inervación , Dendritas/genética , Dendritas/metabolismo , Drosophila/metabolismo , Larva/genética , Larva/metabolismo , Cuerpos Pedunculados/metabolismo , Nervio Olfatorio/crecimiento & desarrollo , Vías Olfatorias/metabolismo
20.
EMBO J ; 28(24): 3868-78, 2009 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-19927123

RESUMEN

Phagocytic removal of cells undergoing apoptosis is necessary for animal development and tissue homeostasis. Draper, a homologue of the Caenorhabditis elegans phagocytosis receptor CED-1, is responsible for the phagocytosis of apoptotic cells in Drosophila, but its ligand presumably present on apoptotic cells remains unknown. An endoplasmic reticulum protein that binds to the extracellular region of Draper was isolated. Loss of this protein, which we name Pretaporter, led to a reduced level of apoptotic cell clearance in embryos, and the overexpression of pretaporter in the mutant flies rescued this defect. Results from genetic analyses suggested that Pretaporter functionally interacts with Draper and the corresponding signal mediators. Pretaporter was exposed at the cell surface after the induction of apoptosis, and cells artificially expressing Pretaporter at their surface became susceptible to Draper-mediated phagocytosis. Finally, the incubation with Pretaporter augmented the tyrosine-phosphorylation of Draper in phagocytic cells. These results collectively suggest that Pretaporter relocates from the endoplasmic reticulum to the cell surface during apoptosis to serve as a ligand for Draper in the phagocytosis of apoptotic cells.


Asunto(s)
Apoptosis , Proteínas de Drosophila/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Fagocitosis , Animales , Membrana Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Retículo Endoplásmico/metabolismo , Hemocitos/metabolismo , Ligandos , Microscopía Fluorescente/métodos , Modelos Genéticos , Mutación , Fagocitos/metabolismo , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...