Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 43(48): 8104-8125, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37816598

RESUMEN

In the brain, microRNAs (miRNAs) are believed to play a role in orchestrating synaptic plasticity at a higher level by acting as an additional mechanism of translational regulation, alongside the mRNA/polysome system. Despite extensive research, our understanding of the specific contribution of individual miRNA to the function of dopaminergic neurons (DAn) remains limited. By performing a dopaminergic-specific miRNA screening, we have identified miR-218 as a critical regulator of DAn activity in male and female mice. We have found that miR-218 is specifically expressed in mesencephalic DAn and is able to promote dopaminergic differentiation of embryonic stem cells and functional maturation of transdifferentiated induced DA neurons. Midbrain-specific deletion of both genes encoding for miR-218 (referred to as miR-218-1 and mir218-2) affects the expression of a cluster of synaptic-related mRNAs and alters the intrinsic excitability of DAn, as it increases instantaneous frequencies of evoked action potentials, reduces rheobase current, affects the ionic current underlying the action potential after hyperpolarization phase, and reduces dopamine efflux in response to a single electrical stimulus. Our findings provide a comprehensive understanding of the involvement of miR-218 in the dopaminergic system and highlight its role as a modulator of dopaminergic transmission.SIGNIFICANCE STATEMENT In the past decade, several miRNAs have emerged as potential regulators of synapse activity through the modulation of specific gene expression. Among these, we have identified a dopaminergic-specific miRNA, miR-218, which is able to promote dopaminergic differentiation and regulates the translation of an entire cluster of synapse related mRNAs. Deletion of miR-218 has notable effects on dopamine release and alters the intrinsic excitability of dopaminergic neurons, indicating a direct control of dopaminergic activity by miR-218.


Asunto(s)
Dopamina , MicroARNs , Ratones , Masculino , Femenino , Animales , Dopamina/metabolismo , Diferenciación Celular , Neuronas Dopaminérgicas/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Neurotransmisores/metabolismo
2.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873436

RESUMEN

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

3.
medRxiv ; 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37732212

RESUMEN

SARS-CoV-2 is spread through exhaled breath of infected individuals. A fundamental question in understanding transmission of SARS-CoV-2 is how much virus an individual is exhaling into the environment while they breathe, over the course of their infection. Research on viral load dynamics during COVID-19 infection has focused on internal swab specimens, which provide a measure of viral loads inside the respiratory tract, but not on breath. Therefore, the dynamics of viral shedding on exhaled breath over the course of infection are poorly understood. Here, we collected exhaled breath specimens from COVID-19 patients and used RTq-PCR to show that numbers of exhaled SARS-CoV-2 RNA copies during COVID-19 infection do not decrease significantly until day 8 from symptom-onset. COVID-19-positive participants exhaled an average of 80 SARS-CoV-2 viral RNA copies per minute during the first 8 days of infection, with significant variability both between and within individuals, including spikes over 800 copies a minute in some patients. After day 8, there was a steep drop to levels nearing the limit of detection, persisting for up to 20 days. We further found that levels of exhaled viral RNA increased with self-rated symptom-severity, though individual variation was high. Levels of exhaled viral RNA did not differ across age, sex, time of day, vaccination status or viral variant. Our data provide a fine-grained, direct measure of the number of SARS-CoV-2 viral copies exhaled per minute during natural breathing-including 312 breath specimens collected multiple times daily over the course of infection-in order to fill an important gap in our understanding of the time course of exhaled viral loads in COVID-19.

4.
Nat Neurosci ; 26(10): 1762-1774, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37537242

RESUMEN

Dopamine neurons are characterized by their response to unexpected rewards, but they also fire during movement and aversive stimuli. Dopamine neuron diversity has been observed based on molecular expression profiles; however, whether different functions map onto such genetic subtypes remains unclear. In this study, we established that three genetic dopamine neuron subtypes within the substantia nigra pars compacta, characterized by the expression of Slc17a6 (Vglut2), Calb1 and Anxa1, each have a unique set of responses to rewards, aversive stimuli and accelerations and decelerations, and these signaling patterns are highly correlated between somas and axons within subtypes. Remarkably, reward responses were almost entirely absent in the Anxa1+ subtype, which instead displayed acceleration-correlated signaling. Our findings establish a connection between functional and genetic dopamine neuron subtypes and demonstrate that molecular expression patterns can serve as a common framework to dissect dopaminergic functions.


Asunto(s)
Neuronas Dopaminérgicas , Sustancia Negra , Neuronas Dopaminérgicas/fisiología , Sustancia Negra/fisiología , Transducción de Señal , Axones
5.
Proc Natl Acad Sci U S A ; 120(22): e2302019120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216517

RESUMEN

Mammalian aging is associated with multiple defects of hematopoiesis, most prominently with the impaired development of T and B lymphocytes. This defect is thought to originate in hematopoietic stem cells (HSCs) of the bone marrow, specifically due to the age-dependent accumulation of HSCs with preferential megakaryocytic and/or myeloid potential ("myeloid bias"). Here, we tested this notion using inducible genetic labeling and tracing of HSCs in unmanipulated animals. We found that the endogenous HSC population in old mice shows reduced differentiation into all lineages including lymphoid, myeloid, and megakaryocytic. Single-cell RNA sequencing and immunophenotyping (CITE-Seq) showed that HSC progeny in old animals comprised balanced lineage spectrum including lymphoid progenitors. Lineage tracing using the aging-induced HSC marker Aldh1a1 confirmed the low contribution of old HSCs across all lineages. Competitive transplantations of total bone marrow cells with genetically marked HSCs revealed that the contribution of old HSCs was reduced, but compensated by other donor cells in myeloid cells but not in lymphocytes. Thus, the HSC population in old animals becomes globally decoupled from hematopoiesis, which cannot be compensated in lymphoid lineages. We propose that this partially compensated decoupling, rather than myeloid bias, is the primary cause of the selective impairment of lymphopoiesis in older mice.


Asunto(s)
Envejecimiento , Células Madre Hematopoyéticas , Ratones , Animales , Linaje de la Célula , Diferenciación Celular , Médula Ósea , Hematopoyesis , Mamíferos
6.
Neurobiol Dis ; 175: 105925, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36372290

RESUMEN

As the ability to capture single-cell expression profiles has grown in recent years, neuroscientists studying a wide gamut of brain regions have discovered remarkable heterogeneity within seemingly related populations (Saunders et al., 2018a; Zeisel et al., 2015). These "molecular subtypes" have been demonstrated even within brain nuclei expressing the same neurotransmitter (Saunders et al., 2018a; Poulin et al., 2020; Ren et al., 2019; Okaty et al., 2020). Recently, dopamine (DA) neurons of the substantia nigra pars compacta (SNc) and adjacent ventral tegmental area (VTA) have been revealed to be diverse not only when comparing between these two dopaminergic nuclei, but within them, and with the distribution of identified subtypes often agnostic to traditional neuroanatomical boundaries (Saunders et al., 2018a; Hook et al., 2018; Kramer et al., 2018; La Manno et al., 2016; Poulin et al., 2014; Tiklova et al., 2019; Poulin et al., 2018). Such molecularly defined subpopulations have been the subject of several recent studies. Investigations of these subtypes have ultimately unveiled many distinctive properties across several domains, such as their axonal projections and functional properties (Poulin et al., 2018; Wu et al., 2019; Pereira Luppi et al., 2021; Evans et al., 2017; Evans et al., 2020). These key differences between subtypes have begun to corroborate the biological relevance of DA neuron taxonomic schemes. We hypothesize that these putative molecular subtypes, with their distinctive circuits, could shed light on the wide variety of dopamine-related symptoms observed across several diseases including depression, chronic pain, addiction, and Parkinson's Disease. While it is difficult to reconcile how a single neurotransmitter can be involved in so many seemingly unrelated phenotypes, one solution could be the existence of several individual dopaminergic pathways serving different functions, with molecular subtypes serving as distinct nodes for these pathways. Indeed, this conceptual framework is already the dogma for anatomically distinct DA pathways, including the mesocortical, mesolimbic and mesostriatal pathways (Bjorklund & Dunnett, 2007). Here, we discuss our existing knowledge of DA neuron subtypes and attempt to provide a roadmap for how their distinctive properties can provide novel insights into the motor symptoms of Parkinson's disease (PD) (Fig. 1A). By exploring the differences between molecular subtypes and correlating this to their relative degeneration within the SNc, we may gain a deeper understanding of the cell-intrinsic mechanisms underlying why some DA neurons degenerate more than others in PD. Similarly, by mapping the inputs, projections, and functions of individual subtypes, we may better understand their individual roles in the circuit-level dysfunction of dopaminergic diseases.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Humanos , Dopamina/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Área Tegmental Ventral/metabolismo , Neuronas Dopaminérgicas/metabolismo , Neurotransmisores/metabolismo
7.
J Neurosci ; 42(34): 6506-6517, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35906072

RESUMEN

Schwann cells play a critical role after peripheral nerve injury by clearing myelin debris, forming axon-guiding bands of Büngner, and remyelinating regenerating axons. Schwann cells undergo epigenomic remodeling to differentiate into a repair state that expresses unique genes, some of which are not expressed at other stages of Schwann cell development. We previously identified a set of enhancers that are activated in Schwann cells after nerve injury, and we determined whether these enhancers are preprogrammed into the Schwann cell epigenome as poised enhancers before injury. Poised enhancers share many attributes of active enhancers, such as open chromatin, but are marked by repressive histone H3 lysine 27 (H3K27) trimethylation rather than H3K27 acetylation. We find that most injury-induced enhancers are not marked as poised enhancers before injury indicating that injury-induced enhancers are not preprogrammed in the Schwann cell epigenome. Injury-induced enhancers are enriched with AP-1 binding motifs, and the c-JUN subunit of AP-1 had been shown to be critical to drive the transcriptional response of Schwann cells after injury. Using in vivo chromatin immunoprecipitation sequencing analysis in rat, we find that c-JUN binds to a subset of injury-induced enhancers. To test the role of specific injury-induced enhancers, we focused on c-JUN-binding enhancers upstream of the Sonic hedgehog (Shh) gene, which is only upregulated in repair Schwann cells compared with other stages of Schwann cell development. We used targeted deletions in male/female mice to show that the enhancers are required for robust induction of the Shh gene after injury.SIGNIFICANCE STATEMENT The proregenerative actions of Schwann cells after nerve injury depends on profound reprogramming of the epigenome. The repair state is directed by injury-induced transcription factors, like JUN, which is uniquely required after nerve injury. In this study, we test whether the injury program is preprogrammed into the epigenome as poised enhancers and define which enhancers bind JUN. Finally, we test the roles of these enhancers by performing clustered regularly interspaced short palindromic repeat (CRISPR)-mediated deletion of JUN-bound injury enhancers in the Sonic hedgehog gene. Although many long-range enhancers drive expression of Sonic hedgehog at different developmental stages of specific tissues, these studies identify an entirely new set of enhancers that are required for Sonic hedgehog induction in Schwann cells after injury.


Asunto(s)
Proteínas Hedgehog , Traumatismos de los Nervios Periféricos , Proteínas Proto-Oncogénicas c-jun , Animales , Femenino , Proteínas Hedgehog/metabolismo , Masculino , Ratones , Vaina de Mielina/metabolismo , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Células de Schwann/metabolismo , Factor de Transcripción AP-1/metabolismo
8.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34905516

RESUMEN

Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1-/- skin showed a delay in expression of adhesion/differentiation/keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17-skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1-/- mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients.


Asunto(s)
Desmogleína 1/inmunología , Desmosomas/inmunología , Queratinocitos/inmunología , Pénfigo/inmunología , Células Th17/inmunología , Animales , Desmogleína 1/genética , Desmosomas/genética , Ratones , Pénfigo/genética
9.
Sci Rep ; 11(1): 22257, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34782629

RESUMEN

During cellular specification, transcription factors orchestrate cellular decisions through gene regulation. By hijacking these transcriptional networks, human pluripotent stem cells (hPSCs) can be specialized into neurons with different molecular identities for the purposes of regenerative medicine and disease modeling. However, molecular fine tuning cell types to match their in vivo counterparts remains a challenge. Directing cell fates often result in blended or incomplete neuron identities. A better understanding of hPSC to neuron gene regulation is needed. Here, we used single cell RNA sequencing to resolve some of these graded molecular identities during human neurogenesis from hPSCs. Differentiation platforms were established to model neural induction from stem cells, and we characterized these differentiated cell types by 10x single cell RNA sequencing. Using single cell trajectory and co-expression analyses, we identified a co-regulated transcription factor module expressing achaete-scute family basic helix-loop-helix transcription factor 1 (ASCL1) and neuronal differentiation 1 (NEUROD1). We then tested the function of these transcription factors in neuron subtype differentiation by gene knockout in a novel human system that reports the expression of tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine synthesis. ASCL1 was identified as a necessary transcription factor for regulating dopaminergic neurotransmitter selection.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Biomarcadores , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neurogénesis
10.
Cell Rep ; 37(6): 109975, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758317

RESUMEN

Dopamine (DA) neurons in the ventral tier of the substantia nigra pars compacta (SNc) degenerate prominently in Parkinson's disease, while those in the dorsal tier are relatively spared. Defining the molecular, functional, and developmental characteristics of each SNc tier is crucial to understand their distinct susceptibility. We demonstrate that Sox6 expression distinguishes ventrally and dorsally biased DA neuron populations in the SNc. The Sox6+ population in the ventral SNc includes an Aldh1a1+ subset and is enriched in gene pathways that underpin vulnerability. Sox6+ neurons project to the dorsal striatum and show activity correlated with acceleration. Sox6- neurons project to the medial, ventral, and caudal striatum and respond to rewards. Moreover, we show that this adult division is encoded early in development. Overall, our work demonstrates a dual origin of the SNc that results in DA neuron cohorts with distinct molecular profiles, projections, and functions.


Asunto(s)
Cuerpo Estriado/patología , Neuronas Dopaminérgicas/patología , Regulación del Desarrollo de la Expresión Génica , Enfermedad de Parkinson/patología , Factores de Transcripción SOXD/metabolismo , Factores de Transcripción SOXD/fisiología , Sustancia Negra/patología , Anciano , Anciano de 80 o más Años , Animales , Estudios de Casos y Controles , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Factores de Transcripción SOXD/genética , Sustancia Negra/metabolismo , Área Tegmental Ventral/metabolismo , Área Tegmental Ventral/patología
11.
Neuron ; 109(5): 823-838.e6, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33476548

RESUMEN

The circuit mechanisms underlying fear-induced suppression of feeding are poorly understood. To help fill this gap, mice were fear conditioned, and the resulting changes in synaptic connectivity among the locus coeruleus (LC), the parabrachial nucleus (PBN), and the central nucleus of amygdala (CeA)-all of which are implicated in fear and feeding-were studied. LC neurons co-released noradrenaline and glutamate to excite PBN neurons and suppress feeding. LC neurons also suppressed inhibitory input to PBN neurons by inducing heterosynaptic, endocannabinoid-dependent, long-term depression of CeA synapses. Blocking or knocking down endocannabinoid receptors in CeA neurons prevented fear-induced depression of CeA synaptic transmission and fear-induced suppression of feeding. Altogether, these studies demonstrate that LC neurons play a pivotal role in modulating the circuitry that underlies fear-induced suppression of feeding, pointing to new ways of alleviating stress-induced eating disorders.


Asunto(s)
Miedo/fisiología , Conducta Alimentaria/fisiología , Locus Coeruleus/fisiología , Neuronas/fisiología , Animales , Núcleo Amigdalino Central/fisiología , Condicionamiento Clásico , Femenino , Ácido Glutámico/fisiología , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Norepinefrina/fisiología , Núcleos Parabraquiales/fisiología , Transmisión Sináptica
12.
Neuron ; 107(4): 595-596, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32818472

RESUMEN

In this issue, Brignani, Raj, et al. show that Netrin-1 from distinct sources controls neuronal migrations into the substantia nigra. Remarkably, one source of Netrin -1 is forebrain axons traversing the midbrain, and this is required for proper GABAergic neuronal migration into the substantia nigra pars reticulata.


Asunto(s)
Neuronas GABAérgicas , Sustancia Negra , Axones , Dopamina , Netrina-1
13.
Dev Cell ; 53(6): 740-753.e3, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32574593

RESUMEN

Lineage tracing aims to identify the progeny of a defined population of dividing progenitor cells, a daunting task in the developing central nervous system where thousands of cell types are generated. In mice, lineage analysis has been accomplished using Cre recombinase to indelibly label a defined progenitor population and its progeny. However, the interpretation of historical recombination events is hampered by the fact that driver genes are often expressed in both progenitors and postmitotic cells. Genetically inducible approaches provide temporal specificity but are afflicted by mosaicism and toxicity. Here, we present PRISM, a progenitor-restricted intersectional fate mapping approach in which Flp recombinase expression is both dependent on Cre and restricted to neural progenitors, thus circumventing the aforementioned confounds. This tool can be used in conjunction with existing Cre lines making it broadly applicable. We applied PRISM to resolve two developmentally important, but contentious, lineages-Shh and Cux2.


Asunto(s)
Linaje de la Célula , Células-Madre Neurales/citología , Prosencéfalo/citología , Animales , Células Cultivadas , ADN Nucleotidiltransferasas/genética , ADN Nucleotidiltransferasas/metabolismo , Femenino , Marcación de Gen/métodos , Genes Reporteros , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica/métodos , Integrasas/genética , Integrasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/metabolismo , Prosencéfalo/embriología
14.
Nat Neurosci ; 23(8): 968-980, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32541962

RESUMEN

The ventral tegmental area (VTA) is important for reward processing and motivation. The anatomic organization of neurotransmitter-specific inputs to the VTA remains poorly resolved. In the present study, we mapped the major neurotransmitter projections to the VTA through cell-type-specific retrograde and anterograde tracing. We found that glutamatergic inputs arose from a variety of sources and displayed some connectivity biases toward specific VTA cell types. The sources of GABAergic projections were more widespread, displayed a high degree of differential innervation of subregions in the VTA and were largely biased toward synaptic contact with local GABA neurons. Inactivation of GABA release from the two major sources, locally derived versus distally derived, revealed distinct roles for these projections in behavioral regulation. Optogenetic manipulation of individual distal GABAergic inputs also revealed differential behavioral effects. These results demonstrate that GABAergic projections to the VTA are a major contributor to the regulation and diversification of the structure.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Transmisión Sináptica/fisiología , Área Tegmental Ventral/metabolismo , Animales , Condicionamiento Clásico/fisiología , Condicionamiento Operante/fisiología , Neuronas Dopaminérgicas/fisiología , Miedo/fisiología , Femenino , Masculino , Ratones , Actividad Motora/fisiología , Vías Nerviosas/metabolismo , Optogenética , Recompensa , Autoestimulación
15.
Cell Rep ; 30(12): 4303-4316.e6, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209486

RESUMEN

Mice engineered for conditional, cell type-specific gene inactivation have dominated the field of mouse genetics because of the high efficiency of Cre-loxP-mediated recombination. Recent advances in CRISPR/Cas9 technologies have provided alternatives for rapid gene mutagenesis for loss-of-function (LOF) analysis. Whether these strategies can be streamlined for rapid genetic analysis with the efficiencies comparable with those of conventional genetic approaches has yet to be established. We show that a single adeno-associated viral (AAV) vector containing a recombinase-dependent Staphylococcus aureus Cas9 (SaCas9) and a single guide RNA (sgRNA) are as efficient as conventional conditional gene knockout and can be adapted for use in either Cre- or Flp-driver mouse lines. The efficacy of this approach is demonstrated for the analysis of GABAergic, glutamatergic, and monoaminergic neurotransmission. Using this strategy, we reveal insight into the role of GABAergic regulation of midbrain GABA-producing neurons in psychomotor activation.


Asunto(s)
Envejecimiento/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Vectores Genéticos/metabolismo , Mutagénesis/genética , Sistema Nervioso/metabolismo , Animales , Secuencia de Bases , Línea Celular , ADN Nucleotidiltransferasas/metabolismo , Proteínas Transportadoras de GABA en la Membrana Plasmática/metabolismo , Ácido Glutámico/metabolismo , Ratones Endogámicos C57BL , Mutación/genética , Optogenética , Fenotipo
16.
Trends Neurosci ; 43(3): 155-169, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32101709

RESUMEN

Dysfunctional dopamine (DA) signaling has been associated with a broad spectrum of neuropsychiatric disorders, prompting investigations into how midbrain DA neuron heterogeneity may underpin this variety of behavioral symptoms. Emerging literature indeed points to functional heterogeneity even within anatomically defined DA clusters. Recognizing the need for a systematic classification scheme, several groups have used single-cell profiling to catalog DA neurons based on their gene expression profiles. We aim here not only to synthesize points of congruence but also to highlight key differences between the molecular classification schemes derived from these studies. In doing so, we hope to provide a common framework that will facilitate investigations into the functions of DA neuron subtypes in the healthy and diseased brain.


Asunto(s)
Neuronas Dopaminérgicas , Mesencéfalo , Encéfalo , Dopamina , Perfilación de la Expresión Génica
17.
Elife ; 72018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30295607

RESUMEN

Dopamine neurons have different synaptic actions in the ventral and dorsal striatum (dStr), but whether this heterogeneity extends to dStr subregions has not been addressed. We have found that optogenetic activation of dStr dopamine neuron terminals in mouse brain slices pauses the firing of cholinergic interneurons in both the medial and lateral subregions, while in the lateral subregion the pause is shorter due to a subsequent excitation. This excitation is mediated mainly by metabotropic glutamate receptor 1 (mGluR1) and partially by dopamine D1-like receptors coupled to transient receptor potential channel 3 and 7. DA neurons do not signal to spiny projection neurons in the medial dStr, while they elicit ionotropic glutamate responses in the lateral dStr. The DA neurons mediating these excitatory signals are in the substantia nigra (SN). Thus, SN dopamine neurons engage different receptors in different postsynaptic neurons in different dStr subregions to convey strikingly different signals. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/fisiología , Interneuronas/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Transmisión Sináptica/fisiología , Animales , Cuerpo Estriado/citología , Potenciales Postsinápticos Excitadores/fisiología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Sustancia Negra/citología , Sustancia Negra/fisiología
18.
Nat Neurosci ; 21(9): 1260-1271, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104732

RESUMEN

Midbrain dopamine (DA) neurons have diverse functions that can in part be explained by their heterogeneity. Although molecularly distinct subtypes of DA neurons have been identified by single-cell gene expression profiling, fundamental features such as their projection patterns have not been elucidated. Progress in this regard has been hindered by the lack of genetic tools for studying DA neuron subtypes. Here we develop intersectional genetic labeling strategies, based on combinatorial gene expression, to map the projections of molecularly defined DA neuron subtypes. We reveal distinct genetically defined dopaminergic pathways arising from the substantia nigra pars compacta and from the ventral tegmental area that innervate specific regions of the caudate putamen, nucleus accumbens and amygdala. Together, the genetic toolbox and DA neuron subtype projections presented here constitute a resource that will accelerate the investigation of this clinically significant neurotransmitter system.


Asunto(s)
Mapeo Encefálico/métodos , Neuronas Dopaminérgicas/fisiología , Vías Nerviosas/fisiología , Animales , Núcleo Caudado/citología , Núcleo Caudado/fisiología , Línea Celular , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/anatomía & histología , Núcleo Accumbens/citología , Núcleo Accumbens/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Sustancia Negra/citología , Sustancia Negra/fisiología
19.
Sci Rep ; 8(1): 3817, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29491350

RESUMEN

Recent studies have elucidated the crucial role for microRNAs in peripheral nerve myelination by ablating components of the microRNA synthesis machinery. Few studies have focused on the role of individual microRNAs. To fill this gap, we focused this study on miR-138, which was shown to be drastically reduced in Dicer1 and Dgcr8 knockout mice with hypomyelinating phenotypes and to potentially target the negative regulators of Schwann cell differentiation. Here, we show that of two miR-138 encoding loci, mir-138-1 is the predominant locus transcribed in Schwann cells. mir-138-1 is transcriptionally upregulated during myelination and downregulated upon nerve injury. EGR2 is required for mir-138-1 transcription during development, and both SOX10 and EGR2 bind to an active enhancer near the mir-138-1 locus. Based on expression analyses, we hypothesized that miR-138 facilitates the transition between undifferentiated Schwann cells and myelinating Schwann cells. However, in conditional knockouts, we could not detect significant changes in Schwann cell proliferation, cell cycle exit, or myelination. Overall, our results demonstrate that miR-138 is an Egr2-dependent microRNA but is dispensable for Schwann cell myelination.


Asunto(s)
Proteína 2 de la Respuesta de Crecimiento Precoz/metabolismo , MicroARNs/genética , Vaina de Mielina/fisiología , Nervios Periféricos/fisiología , Animales , Ciclo Celular/genética , Proliferación Celular/genética , ARN Helicasas DEAD-box/deficiencia , ARN Helicasas DEAD-box/genética , Regulación hacia Abajo , Técnicas de Inactivación de Genes , Sitios Genéticos/genética , Ratones , Nervios Periféricos/citología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III/deficiencia , Ribonucleasa III/genética , Factores de Transcripción SOXE/metabolismo , Células de Schwann/citología
20.
Development ; 144(5): 916-927, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28174244

RESUMEN

The mesodiencephalic floor plate (mdFP) is the source of diverse neuron types. Yet, how this structure is compartmentalized has not been clearly elucidated. Here, we identify a novel boundary subdividing the mdFP into two microdomains, defined by engrailed 1 (En1) and developing brain homeobox 1 (Dbx1). Utilizing simultaneous dual and intersectional fate mapping, we demonstrate that this boundary is precisely formed with minimal overlap between En1 and Dbx1 microdomains, unlike many other boundaries. We show that the En1 microdomain gives rise to dopaminergic (DA) neurons, whereas the Dbx1 microdomain gives rise to subthalamic (STN), premammillary (PM) and posterior hypothalamic (PH) populations. To determine whether En1 is sufficient to induce DA neuron production beyond its normal limit, we generated a mouse strain that expresses En1 in the Dbx1 microdomain. In mutants, we observed ectopic production of DA neurons derived from the Dbx1 microdomain, at the expense of STN and PM populations. Our findings provide new insights into subdivisions in the mdFP, and will impact current strategies for the conversion of stem cells into DA neurons.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Hipotálamo/embriología , Mesencéfalo/embriología , Neuronas/citología , Animales , Diferenciación Celular , Linaje de la Célula , Neuronas Dopaminérgicas/citología , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...