Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Mol Bioeng ; 11(4): 241-253, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29983824

RESUMEN

INTRODUCTION: Mesenchymal stem and progenitor cells (MSCs), which normally reside in the bone marrow, are critical to bone health and can be recruited to sites of traumatic bone injury, contributing to new bone formation. The ability to control the trafficking of MSCs provides therapeutic potential for improving traumatic bone healing and therapy for genetic bone diseases such as hypophosphatasia. METHODS: In this study, we explored the sphingosine-1-phosphate (S1P) signaling axis as a means to control the mobilization of MSCs into blood and possibly to recruit MSCs enhancing bone growth. RESULTS: Loss of S1P receptor 3 (S1PR3) leads to an increase in circulating CD45-/CD29+/CD90+/Sca1 putative mesenchymal progenitor cells, suggesting that blocking S1PR3 may stimulate MSCs to leave the bone marrow. Antagonism of S1PR3 with the small molecule VPC01091 stimulated acute migration of CD45-/CD29+/CD90+/Sca1+ MSCs into the blood as early as 1.5 hours after treatment. VPC01091 administration also increased ectopic bone formation induced by BMP-2 and significantly increased new bone formation in critically sized rat cranial defects, suggesting that mobilized MSCs may home to injuries to contribute to healing. We also explored the possibility of combining S1P manipulation of endogenous host cell occupancy with exogenous MSC transplantation for potential use in combination therapies. Importantly, reducing niche occupancy of host MSCs with VPC01091 does not impede engraftment of exogenous MSCs. CONCLUSIONS: Our studies suggest that MSC mobilization through S1PR3 antagonism is a promising strategy for endogenous tissue engineering and improving MSC delivery to treat bone diseases.

2.
Stem Cells ; 35(4): 1040-1052, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28026131

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) egress from bone marrow (BM) during homeostasis and at increased rates during stress; however, the mechanisms regulating their trafficking remain incompletely understood. Here we describe a novel role for lipid receptor, sphingosine-1-phosphate receptor 3 (S1PR3), in HSPC residence within the BM niche. HSPCs expressed increased levels of S1PR3 compared to differentiated BM cells. Pharmacological antagonism or knockout (KO) of S1PR3 mobilized HSPCs into blood circulation, suggesting that S1PR3 influences niche localization. S1PR3 antagonism suppressed BM and plasma SDF-1, enabling HSPCs to migrate toward S1P-rich plasma. Mobilization synergized with AMD3100-mediated antagonism of CXCR4, which tethers HSPCs in the niche, and recovered homing deficits of AMD3100-treated grafts. S1PR3 antagonism combined with AMD3100 improved re-engraftment and survival in lethally irradiated recipients. Our studies indicate that S1PR3 and CXCR4 signaling cooperate to maintain HSPCs within the niche under homeostasis. These results highlight an important role for S1PR3 in HSPC niche occupancy and trafficking that can be harnessed for both rapid clinical stem cell mobilization and re-engraftment strategies, as well as the opportunity to design novel therapeutics for control of recruitment, homing, and localization through bioactive lipid signaling. Stem Cells 2017;35:1040-1052.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Animales , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Adhesión Celular/efectos de los fármacos , Microambiente Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Movilización de Célula Madre Hematopoyética , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/efectos de los fármacos , Ligandos , Lisofosfolípidos/farmacología , Masculino , Ratones Endogámicos C57BL , Radiación Ionizante , Esfingosina/análogos & derivados , Esfingosina/farmacología , Nicho de Células Madre/efectos de los fármacos
3.
Tissue Eng Part A ; 21(1-2): 202-13, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25315888

RESUMEN

Local delivery of lipid mediators has become a promising new approach for therapeutic angiogenesis and regenerative medicine. In this study, we investigated how gradient stimulation (either abluminal/distal or luminal/proximal) of engineered microvessels with sphingosine 1-phosphate (S1P) receptor-subtype-targeted molecules affects endothelial sprout growth using a microfluidic device. Our studies show that distal stimulation of microvessels with FTY720, an S1P1/3 selective agonist, promotes both arterial and venular sprout growth, whereas proximal stimulation does not. Using novel pharmacological antagonists of S1P receptor subtypes, we further show that S1P3 functionality is necessary for VEGF-induced sprouting, and confirmed these findings ex vivo using a murine aortic ring assay from S1P3-deficient mice. S1P3 agonist stimulation enhanced vascular stability in both cell types via upregulation of the interendothelial junction protein VE-cadherin. Lastly, S1P3 activation under flow promoted endothelial sprouting and branching while decreasing migratory cell fate in the microfluidic device. We used an in vivo murine dorsal skinfold window chamber model to confirm S1P3's role in neovascular branching. Together, these data suggest that a distal transendothelial gradient of S1P1/3-targeted drugs is an effective technique for both enhancing and stabilizing capillary morphogenesis in angiogenic applications.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Fisiológica , Receptores de Lisoesfingolípidos/metabolismo , Animales , Antígenos CD , Aorta/citología , Cadherinas , Movimiento Celular/efectos de los fármacos , Difusión , Células Endoteliales/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/farmacología
4.
Acta Biomater ; 10(11): 4704-4714, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25128750

RESUMEN

Biomaterial-mediated controlled release of soluble signaling molecules is a tissue engineering approach to spatially control processes of inflammation, microvascular remodeling and host cell recruitment, and to generate biochemical gradients in vivo. Lipid mediators, such as sphingosine 1-phosphate (S1P), are recognized for their essential roles in spatial guidance, signaling and highly regulated endogenous gradients. S1P and pharmacological analogs such as FTY720 are therapeutically attractive targets for their critical roles in the trafficking of cells between blood and tissue spaces, both physiologically and pathophysiologically. However, the interaction of locally delivered sphingolipids with the complex metabolic networks controlling the flux of lipid species in inflamed tissue has yet to be elucidated. In this study, complementary in vitro and in vivo approaches are investigated to identify relationships between polymer composition, drug release kinetics, S1P metabolic activity, signaling gradients and spatial positioning of circulating cells around poly(lactic-co-glycolic acid) biomaterials. Results demonstrate that biomaterial-based gradients of S1P are short-lived in the tissue due to degradation by S1P lyase, an enzyme that irreversibly degrades intracellular S1P. On the other hand, in vivo gradients of the more stable compound, FTY720, enhance microvascular remodeling by selectively recruiting an anti-inflammatory subset of monocytes (S1P3(high)) to the biomaterial. Results highlight the need to better understand the endogenous balance of lipid import/export machinery and lipid kinase/phosphatase activity in order to design biomaterial products that spatially control the innate immune environment to maximize regenerative potential.


Asunto(s)
Inflamación/patología , Microvasos/patología , Microvasos/fisiopatología , Receptores de Lisoesfingolípidos/metabolismo , Ingeniería de Tejidos/métodos , Remodelación Vascular , Animales , Clorhidrato de Fingolimod , Cinética , Ácido Láctico/química , Ligandos , Linfocitos/efectos de los fármacos , Lisofosfolípidos , Masculino , Ratones Endogámicos C57BL , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Glicoles de Propileno , Prótesis e Implantes , Receptores de Lisoesfingolípidos/agonistas , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados
5.
Blood ; 124(12): 1941-50, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25075126

RESUMEN

Sphingolipids are a class of lipids containing a backbone of sphingoid bases that can be produced de novo through the reaction of palmitate and serine and further metabolized through the activity of various enzymes to produce intermediates with diverse roles in cellular processes and signal transduction. One of these intermediates, sphingosine 1-phosphate (S1P), is stored at high concentrations (1 µM) in red blood cells (RBCs) and directs a wide array of cellular processes mediated by 5 known G-protein coupled receptors (S1P1-S1P5). In this study, we show that RBC membrane alterations in sickle cell disease enhance the activation acid sphingomyelinase by 13%, resulting in increased production and storage of sphingosine (2.6-fold) and S1P (3.5-fold). We also show that acid sphingomyelinase enhances RBC-derived microparticle (MP) generation. These MPs are internalized by myeloid cells and promote proinflammatory cytokine secretion and endothelial cell adhesion, suggesting that potential crosstalk between circulating inflammatory cells and MPs may contribute to the inflammation-rooted pathogenesis of the disease. Treatment with amitriptyline reduces MP generation in vitro and in vivo and might be used to mitigate inflammatory processes in sickle cell disease.


Asunto(s)
Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/enzimología , Micropartículas Derivadas de Células/enzimología , Eritrocitos Anormales/enzimología , Esfingomielina Fosfodiesterasa/sangre , Anemia de Células Falciformes/etiología , Animales , Adhesión Celular , Moléculas de Adhesión Celular/sangre , Modelos Animales de Enfermedad , Células Endoteliales/patología , Hemoglobina Falciforme/genética , Humanos , Inflamación/sangre , Inflamación/enzimología , Lisofosfolípidos/sangre , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Esfingolípidos/sangre , Esfingosina/análogos & derivados , Esfingosina/sangre
6.
Proc Natl Acad Sci U S A ; 110(34): 13785-90, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23918395

RESUMEN

Endothelial cells play significant roles in conditioning tissues after injury by the production and secretion of angiocrine factors. At least two distinct subsets of monocytes, CD45(+)CD11b(+)Gr1(+)Ly6C(+) inflammatory and CD45(+)CD11b(+)Gr1(-)Ly6C(-) anti-inflammatory monocytes, respond differentially to these angiocrine factors and promote pathogen/debris clearance and arteriogenesis/tissue regeneration, respectively. We demonstrate here that local sphingosine 1-phosphate receptor 3 (S1P3) agonism recruits anti-inflammatory monocytes to remodeling vessels. Poly(lactic-co-glycolic acid) thin films were used to deliver FTY720, an S1P1/3 agonist, to inflamed and ischemic tissues, which resulted in a reduction in proinflammatory cytokine secretion and an increase in regenerative cytokine secretion. The altered balance of cytokine secretion results in preferential recruitment of anti-inflammatory monocytes from circulation. The chemotaxis of these cells, which express more S1P3 than inflammatory monocytes, toward SDF-1α was also enhanced with FTY720 treatment, but not in S1P3 knockout cells. FTY720 delivery enhanced arteriolar diameter expansion and increased length density of the local vasculature. This work establishes a role for S1P receptor signaling in the local conditioning of tissues by angiocrine factors that preferentially recruit regenerative monocytes that can enhance healing outcomes, tissue regeneration, and biomaterial implant functionality.


Asunto(s)
Monocitos/fisiología , Neovascularización Fisiológica/fisiología , Glicoles de Propileno/farmacología , Prótesis e Implantes/efectos adversos , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Ingeniería de Tejidos/métodos , Lesiones del Sistema Vascular/tratamiento farmacológico , Análisis de Varianza , Animales , Western Blotting , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Citocinas/metabolismo , Cartilla de ADN/genética , Portadores de Fármacos , Clorhidrato de Fingolimod , Citometría de Flujo , Humanos , Inmunohistoquímica , Ácido Láctico , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microvasos/citología , Monocitos/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Glicoles de Propileno/administración & dosificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Lisoesfingolípidos/agonistas , Esfingosina/administración & dosificación , Esfingosina/farmacología , Lesiones del Sistema Vascular/etiología
7.
Tissue Eng Part A ; 17(5-6): 617-29, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20874260

RESUMEN

Proper spatial and temporal regulation of microvascular remodeling is critical to the formation of functional vascular networks, spanning the various arterial, venous, capillary, and collateral vessel systems. Recently, our group has demonstrated that sustained release of sphingosine 1-phosphate (S1P) from biodegradable polymers promotes microvascular network growth and arteriolar expansion. In this study, we employed S1P receptor-specific compounds to activate and antagonize different combinations of S1P receptors to elucidate those receptors most critical for promotion of pharmacologically induced microvascular network growth. We show that S1P(1) and S1P(3) receptors act synergistically to enhance functional network formation via increased functional length density, arteriolar diameter expansion, and increased vascular branching in the dorsal skinfold window chamber model. FTY720, a potent activator of S1P(1) and S1P(3), promoted a 107% and 153% increase in length density 3 and 7 days after implantation, respectively. It also increased arteriolar diameters by 60% and 85% 3 and 7 days after implantation. FTY720-stimulated branching in venules significantly more than unloaded poly(D, L-lactic-co-glycolic acid). When implanted on the mouse spinotrapezius muscle, FTY720 stimulated an arteriogenic response characterized by increased tortuosity and collateralization of branching microvascular networks. Our results demonstrate the effectiveness of S1P(1) and S1P(3) receptor-selective agonists (such as FTY720) in promoting microvascular growth for tissue engineering applications.


Asunto(s)
Microvasos/crecimiento & desarrollo , Microvasos/metabolismo , Receptores de Lisoesfingolípidos/metabolismo , Actinas/metabolismo , Animales , Preparaciones de Acción Retardada , Clorhidrato de Fingolimod , Masculino , Ratones , Ratones Endogámicos C57BL , Microvasos/efectos de los fármacos , Modelos Animales , Músculos/efectos de los fármacos , Músculos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Glicoles de Propileno/farmacología , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Receptores de Lisoesfingolípidos/química , Transducción de Señal/efectos de los fármacos , Esfingosina/análogos & derivados , Esfingosina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA