Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Pharmacol Res ; 185: 106510, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36252775

RESUMEN

Glioblastoma multiforme (GBM) is the most common malignant brain tumor with limited therapeutic options. Besides surgery, chemotherapy using temozolomide, carmustine or lomustine is the main pillar of therapy. However, therapy success is limited and prognosis still is very poor. One restraining factor is drug resistance caused by drug transporters of the ATP-binding cassette family, e.g. ABCB1 and ABCG2, located at the blood-brain barrier and on tumor cells. The active efflux of xenobiotics including drugs, e.g. temozolomide, leads to low intracellular drug concentrations and subsequently insufficient anti-tumor effects. Nevertheless, the role of efflux transporters in GBM is controversially discussed. In the present study, we analyzed the role of ABCB1 and ABCG2 in GBM cells showing that ABCB1, but marginally ABCG2, is relevant. Applying a CRISPR/Cas9-derived ABCB1 knockout, the response to temozolomide was significantly augmented demonstrated by decreased cell number (p < 0.001) and proliferation rate (p = 0.04), while apoptosis was increased (p = 0.04). For carmustine, a decrease of cells in G1-phase was detected pointing to cell cycle arrest in the ABCB1 knockout (p = 0.006). For lomustine, however, loss of ABCB1 did not alter the response to the treatment. Overall, this study shows that ABCB1 is involved in the active transport of temozolomide out of the tumor cells diminishing the response to temozolomide. Interestingly, loss of ABCB1 also affected the response to the lipophilic drug carmustine. These findings show that ABCB1 is not only relevant at the blood-brain barrier, but also in the tumor cells diminishing success of chemotherapy.


Asunto(s)
Glioblastoma , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Carmustina/farmacología , Carmustina/uso terapéutico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Lomustina/uso terapéutico , Lomustina/farmacología , Sistemas CRISPR-Cas , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-36992750

RESUMEN

Rooibos (Aspalathus linearis), an indigenous South African plant and its major flavonoid, aspalathin, exhibited positive effects on glycemia and dyslipidemia in animal studies. Limited evidence exists on the effects of rooibos extract taken in combination with oral hypoglycemic and lipid-lowering medications. This study investigated the combined effects of a pharmaceutical grade aspalathin-rich green rooibos extract (GRT) with the sulfonylurea, glyburide, and atorvastatin in a type 2 diabetic (db/db) mouse model. Six-week-old male db/db mice and their nondiabetic lean db+ littermates were divided into 8 experimental groups (n=6/group). Db/db mice were treated orally with glyburide (5 mg/kg bodyweight), atorvastatin (80 mg/kg bodyweight) and GRT (100 mg/kg bodyweight) as mono- and combination therapies respectively, for 5 weeks. An intraperitoneal glucose tolerance test was conducted at 3 weeks of treatment. Serum was collected for lipid analyses and liver tissues for histological examination and gene expression. A significant increase in the fasting plasma glucose (FPG) of the db/db mice compared to their lean counterparts (from 7.98 ± 0.83 to 26.44 ± 1.84, p < 0.0001) was observed. Atorvastatin reduced cholesterol (from 4.00 ± 0.12 to 2.93 ± 0.13, p < 0.05) and triglyceride levels (from 2.77 ± 0.50 to 1.48 ± 0.23, p < 0.05). In db/db mice, the hypotriglyceridemic effect of atorvastatin was enhanced when combined with both GRT and glyburide (from 2.77 ± 0.50 to 1.73 ± 0.35, p = 0.0002). Glyburide reduced the severity and pattern of steatotic lipid droplet accumulation from a mediovesicular type across all lobular areas, whilst combining GRT with glyburide reduced the abundance and severity of lipid droplet accumulation in the centri- and mediolobular areas. The combination of GRT, glyburide and atorvastatin reduced the abundance and severity of lipid accumulation and the intensity score compared to the administered drugs alone. The addition of either GRT or glyburide in combination with atorvastatin had no effect on blood glucose or lipid profiles, but significantly reduced lipid droplet accumulation.

3.
PLoS One ; 16(5): e0251069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33983968

RESUMEN

Oral therapeutics used to treat type 2 diabetes and cardiovascular disease often fail to prevent the progression of disease and their comorbidities. Rooibos (Aspalathus linearis), an endemic South African plant used as an herbal tea, has demonstrated positive effects on glycemia and hypercholesterolemia. However, the treatment efficacy of rooibos extract in combination with conventional hypoglycemic and hypolipidemic medications on blood glucose and lipid profiles has not been established. This study aimed to investigate the effects of combining an aspalathin-rich green rooibos extract (Afriplex GRT™) with pioglitazone and atorvastatin, on blood glucose and lipid levels in obese diabetic (db/db) mice. Six-week-old male db/db mice and their nondiabetic lean littermate controls (db+) were divided into 8 experimental groups (n = 6/group). Db/db mice were treated daily either with pioglitazone (25 mg/kg), atorvastatin (80 mg/kg) and GRT (100 mg/kg), a combination of either drug with GRT or a combination of GRT-pioglitazone and atorvastatin for 5 weeks. Untreated vehicle controls were given dimethyl sulfoxide (0.1%) and phosphate buffered saline solution. At termination, serum and liver tissue were collected for lipid and gene expression analysis. Treatment with GRT, pioglitazone and atorvastatin combination effectively lowered fasting plasma glucose (FPG) levels in db/db mice (p = 0.02), whilst increasing body weight, liver weight, and reducing retroperitoneal fat weight. Atorvastatin monotherapy was effective at reducing cholesterol (from 4.00 ± 0.12 to 2.93 ± 0.13, p = 0.0003), LDL-C (from 0.58 ± 0.04 to 0.50 ± 0.00, p = 0.04), HDL-C (from 2.86 ± 0.05 to 2.50 ± 0.04, p = 0.0003) and TG (from 2.77 ± 0.50 to 1.48 ± 0.23, p = 0.04), compared to the untreated diabetic control. The hypotriglyceridemic effect of atorvastatin was enhanced when used in combination with both GRT and pioglitazone. The addition of pioglitazone to GRT significantly lowered FPG and TG. In db/db mice, Apoa1 was significantly downregulated in the liver, whilst Pparγ was significantly upregulated compared to their db+ counterparts. GRT monotherapy downregulated Apoa1 expression (p = 0.02). Atorvastatin combined with GRT significantly downregulated mRNA expression of Apoa1 (p = 0.03), whilst upregulating the expression of Pparγ (p = 0.03), Pparα (p = 0.002), Srebp1 (p = 0.002), and Fasn (p = 0.04). The GRT-pioglitazone-atorvastatin combination therapy downregulated Apoa1 (p = 0.006), whilst upregulating Fasn (p = 0.005), Pparα (p = 0.041), and Srebp1 (p = 0.03). Natural products can improve the efficacy of current drugs to prevent diabetes-associated complications. GRT in combination with pioglitazone enhanced the reduction of FPG, whilst the addition of atorvastatin to the combination, significantly lowered triglyceride levels. However, when GRT was used in combination with atorvastatin only cholesterol levels were affected. Although these results confirm both glucose- and lipoprotein-lowering biological effects of GRT in combination with pioglitazone and atorvastatin, increased expression of genes involved in lipogenesis, cholesterol, and fatty acid transport, ß-oxidation, and synthesis and storage of fatty acids, may exacerbate the hepatotoxic effects of atorvastatin.


Asunto(s)
Atorvastatina/farmacología , Chalconas/farmacología , Pioglitazona/farmacología , Animales , Aspalathus/química , Aspalathus/metabolismo , Atorvastatina/metabolismo , Glucemia/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Quimioterapia Combinada/métodos , Glucosa/metabolismo , Hiperlipidemias/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Hipolipemiantes , Hígado/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos , Fitoterapia , Pioglitazona/metabolismo , Extractos Vegetales/farmacología
4.
Mol Pharm ; 18(4): 1622-1633, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33730506

RESUMEN

Preparations of Echinacea purpurea (E. purpurea) are widely used for the management of upper respiratory infections, influenza, and common cold, often in combination with other conventional drugs. However, the potential of phytochemical constituents of E. purpurea to cause herb-drug interactions via ABCB1 and ABCG2 efflux transporters remains elusive. The purpose of this study was to investigate the impact of E. purpurea-derived caffeic acid derivatives (cichoric acid and echinacoside) and tetraenes on the mRNA and protein expression levels as well as on transport activity of ABCB1 and ABCG2 in intestinal (Caco-2) and liver (HepG2) cell line models. The safety of these compounds was investigated by estimating EC20 values of cell viability assays in both cell lines. Regulation of ABCB1 and ABCG2 protein in these cell lines were analyzed after 24 h exposure to the compounds at 1, 10, and 50 µg/mL. Bidirectional transport of 0.5 µg/mL Hoechst 33342 and 5 µM rhodamine across Caco-2 monolayer and profiling for intracellular concentrations of the fluorophores in both cell lines were conducted to ascertain inhibition effects of the compounds. Cichoric acid showed no cytotoxic effect, while the EC20 values of tetraenes and echinacoside were 45.0 ± 3.0 and 52.0 ± 4.0 µg/mL in Caco-2 cells and 28.0 ± 4.3 and 62.0 ± 9.9 µg/mL in HepG2 cells, respectively. In general, the compounds showed heterogeneous induction of ABCB1 with the strongest 3.6 ± 1.2-fold increase observed for 10 µg/mL tetraenes in Caco-2 cells (p < 0.001). However, the compounds did not induce ABCG2. None of the phytocompounds inhibited significantly net flux of the fluorophores across Caco-2 monolayers. Overall, tetraenes moderately induced ABCB1 but not ABCG2 in Caco-2 and HepG2 cells while no compound significantly inhibited activity of these transporters at clinically relevant concentration to cause herb-drug interactions.


Asunto(s)
Ácidos Cafeicos/farmacología , Echinacea/química , Glicósidos/farmacología , Interacciones de Hierba-Droga , Succinatos/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP/agonistas , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/agonistas , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Células CACO-2 , Células Hep G2 , Eliminación Hepatobiliar , Humanos , Eliminación Intestinal , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/metabolismo
5.
Pharmacol Res ; 161: 105250, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33059010

RESUMEN

Drug-drug interactions (DDI) potentially occurring between medications used in the course of COVID-19 infection and medications prescribed for the management of underlying comorbidities may cause adverse drug reactions (ADRs) contributing to worsening of the clinical outcome in affected patients. First, we conducted a meta-analysis to determine comorbidities observed in the course of COVID-19 disease associated with an increased risk of worsened clinical outcome from 24 published studies. In addition, the potential risk of DDI between medications used in the course of COVID-19 treatment in these studies and those for the management of observed comorbidities was evaluated for possible worsening of the clinical outcome. Our meta-analysis revealed an implication cardiometabolic syndrome (e.g. cardiovascular disease, cerebrovascular disease, hypertension, and diabetes), chronic kidney disease and chronic obstructive pulmonary disease as main co-morbidities associated with worsen the clinical outcomes including mortality (risk difference RD 0.12, 95 %-CI 0.05-0.19, p = 0.001), admission to ICU (RD 0.10, 95 %-CI 0.04-0.16, p = 0.001) and severe infection (RD 0.05, 95 %-CI 0.01-0.09, p = 0.01) in COVID-19 patients. Potential DDI on pharmacokinetic level were identified between the antiviral agents atazanavir and lopinavir/ritonavir and some drugs, used in the treatment of cardiovascular diseases such as antiarrhythmics and anti-coagulants possibly affecting the clinical outcome including cardiac injury or arrest because of QTc-time prolongation or bleeding. Concluding, DDI occurring in the course of anti-Covid-19 treatment and co-morbidities could lead to ADRs, increasing the risk of hospitalization, prolonged time to recovery or death on extreme cases. COVID-19 patients with cardiometabolic diseases, chronic kidney disease and chronic obstructive pulmonary disease should be subjected to particular carefully clinical monitoring of adverse events with a possibility of dose adjustment when necessary.


Asunto(s)
COVID-19/complicaciones , COVID-19/terapia , Interacciones Farmacológicas , Comorbilidad , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Resultado del Tratamiento
6.
OMICS ; 24(12): 682-684, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32833598

RESUMEN

What would it take in terms of the structural reforms in science, technology, and culture to cultivate sustainable therapeutic and preventive medicine innovations against zoonotic infections such as coronavirus disease 2019 (COVID-19) in the 21st century? In May 2019, the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services warned that "around one million animal and plant species are now threatened with extinction." Biodiversity is essential for drug discovery and development. We are currently facing a dual challenge in therapeutics innovation with COVID-19 and loss in planetary biodiversity. Hence, there is an urgent need for new ideas and strategies for drug discovery as well as repurposed drugs for the COVID-19 pandemic. To these ends, the existing scholarship in, and the field of precision herbal medicine provide an alternative source for discovery of novel therapeutics against the novel coronavirus. We propose that the application of precision herbal medicine in Africa could usefully contribute to current efforts for therapeutics innovation for the COVID-19 pandemic, and beyond. The pandemic calls for interdisciplinary dialogue and turning up the volume for precision herbal medicine in Africa, and importantly, in ways informed by robust systems science as well as broad public engagement to codesign medicines in the 21st century.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , SARS-CoV-2/efectos de los fármacos , África , Animales , Biodiversidad , COVID-19/virología , Medicina de Hierbas/métodos , Humanos , Pandemias/prevención & control , Medicina de Precisión/métodos
7.
Phytother Res ; 34(7): 1519-1529, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32017271

RESUMEN

The increased use of herbal supplements as complementary or alternative medicines has become a clinical conundrum due to the potential for herb-drug interactions. This is exacerbated by an increased supply of new herbal supplements in the market claiming various health advantages. These herbal supplements are available as over-the-counter self-medications. Herbal supplements are generally perceived as efficacious without side effects commonly associated with conventional drugs. However, despite regulations, claims related to their therapeutic effects are mostly unsupported by scientific evidence. These products often lack suitable product quality controls, labelled inadequately and with batch to batch variations, potentially compromising the safety of the consumer. Amongst health practitioners, the greatest concern is related to the lack of chemical characterization of the active compounds of the herbal supplements. The interaction between these different active components and their concomitant effects on other conventional drugs is generally not known. This review will focus on herbal supplements with the potential to effect pharmacokinetic and pharmacodynamic properties of oestrogen-based oral contraceptives. The use of herbal supplements for weight management, depression, and immune boosting benefits were selected as likely herbal supplements to be used concomitantly by women on oral contraceptives.


Asunto(s)
Anticonceptivos Orales/química , Suplementos Dietéticos/análisis , Estrógenos/metabolismo , Interacciones de Hierba-Droga/fisiología , Femenino , Humanos , Masculino
8.
Front Pharmacol ; 10: 1243, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31708777

RESUMEN

An aspalathin-rich green rooibos extract (Afriplex GRT™) has demonstrated anti-diabetic and hypolipidemic properties, while also moderately inhibiting CYP3A4 activity, suggesting a potential for herb-drug interaction. The present study, therefore, evaluated the effects of orally administered GRT on the pharmacokinetics of atorvastatin and metformin in Wistar rats. Wistar rats were orally treated with GRT (50 mg/kg BW), atorvastatin (40 mg/kg BW) or metformin (150 mg/kg BW) alone or 50 mg/kg BW GRT in combination with 40 mg/kg BW atorvastatin or 150 mg/kg BW metformin. Blood samples were collected at 0, 10, and 30 min and 1, 2, 4, 6, and 8 h and plasma samples obtained for Liquid chromatography-mass spectrometry (LC-MS/MS) analyses. Non-compartment and two-compartment pharmacokinetic parameters of atorvastatin and metformin in the presence or absence of GRT were determined by PKSolver version 2.0 software. Membrane transporter proteins, ATP-binding cassette sub-family C member 2 (Abcc2), solute carrier organic anion transporter family, member 1b2 (Slco1b2), ATP-binding cassette, sub-family B (MDR/TAP), member 1A (Abcb1a), and organic cation transporter 1 (Oct1) mRNA expression were determined using real-time PCR expression data normalized to ß-actin and hypoxanthine-guanine phosphoribosyltransferase (HPRT), respectively. Co-administration of GRT with atorvastatin substantially increased the maximum plasma concentration (Cmax) and area of the plasma concentration-time curve (AUC0-8) of atorvastatin by 5.8-fold (p = 0.03) and 5.9-fold (p = 0.02), respectively. GRT had no effect on the plasma levels of metformin. GRT increased Abcc2 expression and metformin downregulated Abcb1a expression while the combination of GRT with atorvastatin or metformin did not significantly alter the expression of Slco1b1 or Oct1 did not significantly alter the expression of Sclo1b2 or Oct1. Co-administration of GRT with atorvastatin in rats may lead to higher plasma concentrations and, therefore, to an increase of the exposure to atorvastatin.

9.
Pharmacol Res ; 141: 397-408, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30660822

RESUMEN

Although several studies on pharmacokinetic and/or pharmacodynamic herb-drug interactions (HDI) have been conducted in healthy volunteers, there is large uncertainty on the validity of these studies. A qualitative review and a meta-analysis were performed to establish the clinical evidence of these interaction studies. Out of 4026 screened abstracts, 32 studies were included into the qualitative analysis. The meta-analysis was performed on eleven additional studies. St. John's wort (SJW) significantly decreased the AUC (p < 0.0001) and clearance (p = 0.007) of midazolam. Further subgroup analysis identified age to affect Cmax of midazolam (p < 0.01) in the presence of SJW. Echinacea purpurea (EP) significantly increased the clearance of midazolam (p = 0.01). Evidence of publication bias (p > 0.001) was shown on the effect of the herbal products o half-life of midazolam. Green tea (GT) showed significant 85% decrease in plasma concentration of nadolol. The study findings suggest that GT, SJW and EP perpetuate significant interactions with prescribed medications via CYP3A4 or OATP1A2. Our studies show that meta-analyses are important in the area of natural products to provide necessary information on their use in overall medication plans in order to avoid unintended interactions.


Asunto(s)
Interacciones de Hierba-Droga , Preparaciones de Plantas/farmacología , Animales , Transporte Biológico/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Echinacea/química , Humanos , Hypericum/química , Hipnóticos y Sedantes/metabolismo , Hipnóticos y Sedantes/farmacocinética , Midazolam/metabolismo , Midazolam/farmacocinética , Oximas/metabolismo , Oximas/farmacocinética , Preparaciones de Plantas/química , Té/química
10.
Br J Clin Pharmacol ; 84(4): 679-693, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29363155

RESUMEN

The aim of this review was to assess the severity of adverse drug reactions (ADRs) due to herb-drug interactions (HDI) in patients taking herbs and prescribed medications based on published evidence. Electronic databases of PubMed, the Cochrane Library, Medline and Scopus were searched for randomized or nonrandomized clinical studies, case-control and case reports of HDI. The data were extracted and the causal relationship of ADRs as consequences of HDI assessed using Horn's drug interaction probability scale or Roussel Uclaf Causality Assessment Method scoring systems. The mechanism of interaction was ascertained using Stockley's herbal medicine interaction companion. Forty-nine case reports and two observational studies with 15 cases of ADRs were recorded. The majority of the patients were diagnosed with cardiovascular diseases (30.60%), cancer (22.45%) and renal transplants (16.32%) receiving mostly warfarin, alkylating agents and cyclosporine, respectively. HDI occurred in patients resulting in clinical ADRs with different severity. Patients may poorly respond to therapeutic agents or develop toxicity due to severe HDI, which in either scenario may increase the cost of treatment and/or lead to or prolong patient hospitalization. It is warranted to increase patient awareness of the potential interaction between herbs and prescribed medicines and their consequences to curb HDI as a potential health problem.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Interacciones de Hierba-Droga , Preparaciones de Plantas/efectos adversos , Humanos , Preparaciones de Plantas/administración & dosificación , Ensayos Clínicos Controlados Aleatorios como Asunto , Índice de Severidad de la Enfermedad
11.
Xenobiotica ; 48(10): 1050-1058, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28990842

RESUMEN

1. The aim of this study was to investigate the regulatory effect of Echinacea purpurea (EP) on efflux transporters ABCB1 and ABCG2 and to identify specific microRNAs contributing to their post-transcriptional regulation. 2. ABCB1 and ABCG2 levels were assessed in human hepatoblastoma HepG2 cells treated with 50 µg/mL methanolic extract of commercial EP capsules for different durations. The microRNA expression profile of HepG2 cells after EP treatment was evaluated and in silico target prediction was subsequently conducted to identify specific microRNAs with binding sites in the 3'-UTR of ABCB1 and ABCG2. Luciferase reporter gene assays and site-directed mutagenesis were used to confirm the binding site of identified microRNA within the 3'-UTR of the target gene. 3. EP increased ABCB1 (10-fold ± 3.4, p < 0.001) and ABCG2 (2.7-fold ± 0.5, p < 0.01) mRNA levels after 12 h exposure. Twenty-four microRNAs showed significant expression differences at all durations of exposure to EP. MiR-655-3p showed a 6.79-fold decrease in expression after 12 h exposure compared to 0 h, was predicted in silico to bind ABCG2 3'-UTR and showed a significant negative correlation (p = 0.01) to ABCG2 expression level. The binding of miR-655-3p to ABCG2 3'-UTR was confirmed by reporter gene assays (reduction of reporter gene activity to 60%; p = 0.0001). 4. These results suggest that EP regulates ABCG2 expression via downregulation of miR-655-3p in the liver cells. Thus, miR-655-3p downregulation could be applied to predict EP mediated drug interactions.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Echinacea/química , MicroARNs/metabolismo , Proteínas de Neoplasias/genética , Regiones no Traducidas 3'/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Regulación de la Expresión Génica , Células Hep G2 , Humanos , MicroARNs/genética , Proteínas de Neoplasias/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
12.
Molecules ; 21(11)2016 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-27845750

RESUMEN

Rooibos extract, due to its glucose and lipid lowering effects, has potential as a nutraceutical for improvement of metabolic dysfunction. Potential herb-drug interactions as a result of the use of natural products are of increasing concern. Cytochrome P450 enzymes, CYP2C8, CYP2C9, and CYP3A4, are important in the metabolism of hypoglycemic drugs, such as thiazolidinediones (TZDs) and sulfonylureas, and hypocholesterolemic drugs, such as atorvastatin. This study investigated the effects of rooibos extracts, prepared from "unfermented" and "fermented" rooibos plant material and two of the major bioactive compounds, Z-2-(ß-d-glucopyranosyloxy)-3-phenylpropenoic acid (PPAG) and aspalathin (ASP), on Vivid® recombinant CYP450 enzymes. Unfermented (GRT) and fermented (FRE) rooibos extracts inhibited the activity of CYP2C8 (7.69 ± 8.85 µg/mL and 8.93 ± 8.88 µg/mL, respectively) and CYP3A4 (31.33 ± 4.69 µg/mL and 51.44 ± 4.31 µg/mL, respectively) based on their respective IC50 concentrations. Both extracts dose- and time-dependently inhibited CYP2C8 activity, but only time-dependently inhibited CYP2C9. CYP3A4 showed concentration-dependent inhibition by ASP, GRT, and FRE at 25, 50, and 100 µg/mL concentrations. ASP, GRT, and FRE time-dependently inhibited CYP3A4 activity with GRT and FRE showing a more potent time-dependent inhibition, comparable to erythromycin. These findings suggest that herb-drug interactions may occur when nutraceuticals containing rooibos extracts are co-administered with hypoglycemic drugs such as TZDs, sulfonylureas, and dyslipidemic drug, atorvastatin.


Asunto(s)
Aspalathus/química , Sistema Enzimático del Citocromo P-450/metabolismo , Hipolipemiantes/farmacología , Extractos Vegetales/farmacología , Chalconas/farmacología , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Interacciones de Hierba-Droga , Hipoglucemiantes/farmacología , Fenilpropionatos/farmacología , Extractos Vegetales/química
13.
Molecules ; 21(2)2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26891286

RESUMEN

Highly active antiretroviral therapy (HAART) has greatly improved health parameters of HIV infected individuals. However, there are several challenges associated with the chronic nature of HAART administration. For populations in health transition, dual use of medicinal plant extracts and conventional medicine poses a significant challenge. There is need to evaluate interactions between commonly used medicinal plant extracts and antiretroviral drugs used against HIV/AIDS. Efavirenz (EFV) and nevirapine (NVP) are the major components of HAART both metabolized by CYP2B6, an enzyme that can potentially be inhibited or induced by compounds found in medicinal plant extracts. The purpose of this study was to evaluate the effects of extracts of selected commonly used medicinal plants on CYP2B6 enzyme activity. Recombinant human CYP2B6 was used to evaluate inhibition, allowing the assessment of herb-drug interactions (HDI) of medicinal plants Hyptis suaveolens, Myrothamnus flabellifolius, Launaea taraxacifolia, Boerhavia diffusa and Newbouldia laevis. The potential of these medicinal extracts to cause HDI was ranked accordingly for reversible inhibition and also classified as potential time-dependent inhibitor (TDI) candidates. The most potent inhibitor for CYP2B6 was Hyptis suaveolens extract (IC50 = 19.09 ± 1.16 µg/mL), followed by Myrothamnus flabellifolius extract (IC50 = 23.66 ± 4.86 µg/mL), Launaea taraxacifolia extract (IC50 = 33.87 ± 1.54 µg/mL), and Boerhavia diffusa extract (IC50 = 34.93 ± 1.06 µg/mL). Newbouldia laevis extract, however, exhibited weak inhibitory effects (IC50 = 100 ± 8.71 µg/mL) on CYP2B6. Launaea taraxacifolia exhibited a TDI (3.17) effect on CYP2B6 and showed a high concentration of known CYP450 inhibitory phenolic compounds, chlorogenic acid and caffeic acid. The implication for these observations is that drugs that are metabolized by CYP2B6 when co-administered with these herbal medicines and when adequate amounts of the extracts reach the liver, there is a high likelihood of standard doses affecting drug plasma concentrations which could lead to toxicity.


Asunto(s)
Extractos Vegetales/química , Extractos Vegetales/farmacología , Plantas Medicinales/química , Alquinos , Terapia Antirretroviral Altamente Activa , Benzoxazinas/farmacología , Ciclopropanos , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Inhibidores del Citocromo P-450 CYP2B6/química , Inhibidores del Citocromo P-450 CYP2B6/farmacología , Interacciones de Hierba-Droga , Humanos , Magnoliopsida/química , Nevirapina/farmacología
14.
Drug Metab Lett ; 9(1): 48-62, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25600201

RESUMEN

Kalanchoe crenata popularly known as "dog's liver" is used in most African countries for the treatment of chronic diseases such as diabetes, asthma and HIV/AIDS related infections. The evaluation of K. crenata for herb-drug interactions has not been reported. This study therefore aims to evaluate the risk of K. crenata for herb-drug interaction in vitro. Crude methanol and fractions of K. crenata were incubated and preincubated with recombinant human CYP2C19 and CYP3A4. Comparative studies were conducted in both human liver microsomes and recombinant human CYP to ascertain the inhibition profile of the crude extract and the various fractions. The cocktail approach of recombinant human CYPs was conducted to confirm the inhibition potential of the fractions in the presence of other CYPs. The results showed significant time-dependent inhibition of tested samples on CYP3A4 with crude methanol (39KC), fractions 45A, 45B and 45D given IC50 fold decrease of 3.29, 2.26, 1.91 and 1.49, respective. Time dependent kinetic assessment of 39KC and 45D showed KI and kinact values for 39KC as 1.77 µg/mL and 0.091 min(-1) while that of 45D were 6.45 µg/mL and 0.024 min(-1), respectively. Determination of kinact based on IC50 calculations yielded 0.015 and 0.04 min(-1) for 39KC and 45D, respectively. Cocktail approach exhibited fold decreases in IC50 for all test fractions on CYP3A4 within the ranges of 2.10 - 4.10. At least one phytoconstituent in the crude methanol extract of Kalanchoe crenata is a reversible and time-dependent inhibitor of CYP3A4.


Asunto(s)
Inhibidores del Citocromo P-450 CYP2C19/farmacología , Citocromo P-450 CYP2C19/metabolismo , Inhibidores del Citocromo P-450 CYP3A/farmacología , Citocromo P-450 CYP3A/metabolismo , Kalanchoe , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Inhibidores del Citocromo P-450 CYP2C19/aislamiento & purificación , Inhibidores del Citocromo P-450 CYP3A/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Interacciones de Hierba-Droga , Humanos , Kalanchoe/química , Cinética , Hígado/enzimología , Metanol/química , Microsomas Hepáticos/enzimología , Modelos Biológicos , NADP/metabolismo , Extractos Vegetales/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Medición de Riesgo , Solventes/química , Testosterona/metabolismo
15.
Xenobiotica ; 45(3): 218-29, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25377539

RESUMEN

1.This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. 2.Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. 3. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. 4.Thus E. purpurea preparations cause herb-drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP3A/genética , Echinacea/química , Extractos Vegetales/farmacología , Receptores de Esteroides/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Biocatálisis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Genes Reporteros , Células Hep G2 , Interacciones de Hierba-Droga , Humanos , Luciferasas/metabolismo , Receptor X de Pregnano , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
16.
Interdiscip Toxicol ; 8(4): 193-202, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27486381

RESUMEN

Polyhexamethylene biguanide (PHMB) is an antiseptic with antiviral and antibacterial properties used in a variety of products including wound care dressings, contact lens cleaning solutions, perioperative cleansing products, and swimming pool cleaners. There are regulatory concerns with regard to its safety in humans for water treatment. We decided to assess the safety of this chemical in Sprague-Dawley rats. PHMB was administered in a single dose by gavage via a stomach tube as per the manufacturer's instruction within a dose range of 2 mg/kg to 40 mg/kg. Subchronic toxicity studies were also conducted at doses of 2 mg/kg, 8 mg/kg and 32 mg/kg body weight and hematological, biochemical and histopathological findings of the major organs were assessed. Administration of a dose of 25.6 mg/kg, i.e. 1.6 mL of 0.4% PHMB solution (equivalent to 6.4x10(3) mg/L of 0.1% solution) resulted in 50% mortality. Histopathological analysis in the acute toxicity studies showed that no histopathological lesions were observed in the heart and kidney samples but 30% of the animals had mild hydropic changes in zone 1 of their liver samples, while at a dosage of 32 mg/kg in the subchronic toxicity studies, 50% of the animals showed either mild hepatocyte cytolysis with or without lymphocyte infiltration and feathery degeneration. Lymphocyte infiltration was, for the first time, observed in one heart sample, whereas one kidney sample showed mild tubular damage. The acute studies showed that the median lethal dose (LD50) is 25.6 mg/kg (LC50 of 1.6 mL of 0.4% PHMB. Subchronic toxicological studies also revealed few deleterious effects on the internal organs examined, as seen from the results of the biochemical parameters evaluated. These results have implications for the use of PHMB to make water potable.

17.
Int J Toxicol ; 33(6): 523-31, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25359731

RESUMEN

Polyhexamethylene guanidine hydrochloride (PHMGH) is used worldwide as an antimicrobial agent with broad spectra of activity and also for treating pool water. This non-GLP preliminary study aims at investigating in a subchronic toxicity study possible effects at supra-optimal doses of this biocide. Both acute and subchronic toxicity studies were conducted. LD(50) for PHMGH was estimated to be 600 mg/kg (ie LC(50) 2 ml of 7.5% solution) when administered as a single dose by gavage via a stomach tube in accordance with the expected route of administration. The acute studies showed that the median lethal dose (LD(50)) of 600 mg/kg was accompanied by signs of neurotoxicity. Haematological and biochemical parameters of subchronic toxicity studies were non-significant. Subchronic doses of 0.006 mg/kg, 0.012 mg/kg and 0.036 mg/kg were administered. 20% of the animals at a dose of 0.006 mg/kg and 0.036 mg/kg showed mild degrees of hydropic changes in proximal tubules while 10% of animals at all the doses had their liver tissues showing local areas of mild pericentral hepatocytes degeneration. PHMGH did not produce any major organ defect with regard to the kidney, heart, and liver. The LD(50) was much higher than the recommended dosage by a factor of about 50,000. The recommended residual concentration is far less than the median lethal dose using rats as test subjects. These results could serve as a basis for investigating the full toxicological profile if it is to be used for the treatment of raw water to make it potable.


Asunto(s)
Antiinfecciosos/toxicidad , Guanidinas/toxicidad , Animales , Conducta Animal/efectos de los fármacos , Femenino , Riñón/efectos de los fármacos , Riñón/patología , Dosificación Letal Mediana , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Miocarditis/inducido químicamente , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Subcrónica
18.
Front Pharmacol ; 5: 178, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25152732

RESUMEN

Labisia pumila (Kacip Fatimah) is a popular herb in Malaysia that has been traditionally used in a number of women's health applications such as to improve libido, relieve postmenopausal symptoms, and to facilitate or hasten delivery in childbirth. In addition, the constituents of this plant have been reported to possess anticancer, antioxidant, and anti-inflammatory properties. Clinical studies have indicated that cytochrome P450s (CYPs), P-glycoprotein (P-gp), and Pregnane X receptor (PXR) are the three main modulators of drug-drug interactions which alter the absorption, distribution, and metabolism of drugs. Given the widespread use of Kacip Fatimah in dietary supplements, the current study focuses on determining the potential of its constituents to affect the activities of CYPs, P-gp, or PXR using in vitro assays which may provide useful information toward the risk of herb-drug interaction with concomitantly used drugs. Six compounds isolated from the roots of L. pumila (2 saponins and 4 alkyl phenols) were tested, in addition to the methanolic extract. The extract of L. pumila showed a significant time dependent inhibition (TDI) of CYP3A4, reversible inhibition of CYP2C9 and 2C19 and a weak inhibition of 1A2 and 2D6 as well as an inhibition of P-gp and rifampicin-induced PXR activation. The alkyl phenols inhibited CYP3A4 (TDI), CYP2C9, and 2C19 (reversible) while saponins inhibited P-gp and PXR. In conclusion, L. pumila and its constituents showed significant modulation of all three regulatory proteins (CYPs, P-gp, and PXR) suggesting a potential to alter the pharmacokinetic and pharmacodynamic properties of conventional drugs if used concomitantly.

19.
J Pharm Pharm Sci ; 17(1): 1-19, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24735758

RESUMEN

The Caco-2 model is employed in pre-clinical investigations to predict the likely gastrointestinal permeability of drugs because it expresses cytochrome P450 enzymes, transporters, microvilli and enterocytes of identical characteristics to the human small intestine. The FDA recommends this model as integral component of the Biopharmaceutics Classification System (BCS). Most dedicated laboratories use the Caco-2 cell line to screen new chemical entities through prediction of its solubility, bioavailability and the possibility of drug-drug or herb-drug interactions in the gut lumen. However, challenges in the inherent characteristics of Caco-2 cell and inter-laboratory protocol variations have resulted to generation of irreproducible data. These limitations affect the extrapolation of data from pre-clinical research to clinical studies involving drug-drug and herb-drug interactions. This review addresses some of these caveats and enumerates the plausible current and future approaches to reduce the anomalies associated with Caco-2 cell line investigations focusing on its application in herb-drug interactions.


Asunto(s)
Células CACO-2/efectos de los fármacos , Interacciones de Hierba-Droga , Disponibilidad Biológica , Supervivencia Celular , Evaluación Preclínica de Medicamentos/métodos , Humanos , Absorción Intestinal
20.
Drug Metab Lett ; 7(2): 83-95, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24475926

RESUMEN

The purpose of this study was to evaluate the potential risk of common herbal medicines used by HIV-infected patients in Africa for herb-drug interactions (HDI). High throughput screening assays consisting of recombinant Cytochrome P450 enzymes (CYPs) and fluorescent probes, and parallel artificial membrane permeability assays (PAMPA) were used. The potential of herbal medicines to cause HDI was ranked according to FDA guidelines for reversible inhibition and categorization of time dependent inhibition was based on the normalized ratio. CYPs 1A2 and 3A4 were most inhibited by the herbal extracts. H. hemerocallidea (IC50 = 0.63 µg/mL and 58 µg/mL) and E. purpurea (IC50 = 20 µg/mL and 12 µg/mL) were the potent inhibitors of CYPs 1A2 and 3A4 respectively. L. frutescens and H. hemerocallidea showed clear time dependent inhibition on CYP3A4. Furthermore, the inhibitory effect of both H. hemerocallidea and L. frutescens before and after PAMPA were identical. The results indicate potential HDI of H. hemerocallidea, L. frutescens and E. purpurea with substrates of the affected enzymes if maximum in vivo concentration is achieved.


Asunto(s)
Fármacos Anti-VIH/efectos adversos , Inhibidores Enzimáticos del Citocromo P-450/efectos adversos , Sistema Enzimático del Citocromo P-450/metabolismo , Infecciones por VIH/tratamiento farmacológico , Interacciones de Hierba-Droga , Preparaciones de Plantas/efectos adversos , África , Relación Dosis-Respuesta a Droga , Infecciones por VIH/diagnóstico , Ensayos Analíticos de Alto Rendimiento , Humanos , Isoenzimas , Fitoterapia , Plantas Medicinales , Proteínas Recombinantes/metabolismo , Medición de Riesgo , Factores de Riesgo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...