Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 7(11): e08389, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34849420

RESUMEN

This study was conducted with a view to screen nine genotypes of Cacao from The Cocoa Research Institute of Ghana (CRIG) to test their abilities to withstand drought stress conditions using parameters such as leaf relative water content (RWC), proline accumulation in leaves and trichomes. The experimental design consisted of three replicates of the genotypes used and these were laid out in Complete Randomized Block Design (CRBD) to determine the drought tolerance potentials of the nine genotypes of cocoa at the seedling stage. Two water treatments were used which involved withholding water from one day after full saturation with water prior to the first appearance of drought symptoms (FADS) and watering every two days to the completion of the experiment. Results in this research revealed that proline was found to gather in water-stressed seedlings, and the differences in the mean proline amounts in the genotypes was found to be significant. Genotype T63/971 x Sca9 had the most elevated concentration of free proline at FADS (4 µg/g DW) followed by genotype T60 x Pound10 (3.5 µg/g DW) whereas genotype PA150 × 9006 had the smallest amount of accumulated proline in leaves. Genotype PA150 × 6020 had the highest RWC and SMC of 65% and 1.5% respectively at FADS whilst genotype PA7 x 6035 had the lowest RWC of 43%. There was a direct relationship between the amounts of free proline of genotypes T63/971 x SCA9 and T60 x POUND10 and their respective RWC of the leaves. Genotypes T63/971 x SCA9 and PA150 × 9006 had the highest and lowest numbers of trichomes respectively. Inference from this study revealed that T63/971 x SCA9 and T60 x POUND10 genotypes appear to be the most drought-tolerant genotypes in view of their relatively high values of free proline content, leaf RWC, trichomes and lower values of soil water use (SMC).

2.
BMC Res Notes ; 9(1): 427, 2016 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-27581466

RESUMEN

BACKGROUND: In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. METHODS: Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 â†’ 4)-ß-D-galactan (LM5), (1 â†’ 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. RESULTS: Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. CONCLUSIONS: Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into understanding the structural and architectural organization of the cell walls during abscission.


Asunto(s)
Mutación/genética , Pectinas/inmunología , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Polisacáridos/inmunología , Semillas/metabolismo , Alelos , Cruzamientos Genéticos , Técnica del Anticuerpo Fluorescente , Sitios Genéticos , Pisum sativum/citología , Proteínas de Plantas/metabolismo , Semillas/citología
3.
BMC Res Notes ; 4: 489, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22078070

RESUMEN

BACKGROUND: The def mutant pea (Pisum sativum L) showed non-abscission of seeds from the funicule. Here we present data on seed development and growth pattern and their relationship in predicting this particular trait in wild type and mutant lines as well as the inheritance pattern of the def allele in F2 and F3 populations. FINDINGS: Pod length and seed fresh weight increase with fruit maturity and this may affect the abscission event in pea seeds. However, the seed position in either the distal and proximal ends of the pod did not show any difference. The growth factors of seed fresh weight (FW), width of funicles (WFN), seed width (SW) and seed height (SH) were highly correlated and their relationships were determined in both wild type and def mutant peas. The coefficient of determination R2 values for the relationship between WFN and FW, SW and SH and their various interactions were higher for the def dwarf type. Stepwise multiple regression analysis showed that variation of WFN was associated with SH and SW. Pearson's chi square analysis revealed that the inheritance and segregation of the Def locus in 3:1 ratio was significant in two F2 populations. Structural analysis of the F3 population was used to confirm the inheritance status of the Def locus in F2 heterozygote plants. CONCLUSIONS: This study investigated the inheritance of the presence or absence of the Def allele, controlling the presence of an abscission zone (AZ) or an abscission-less zone (ALZ) forming in wild type and mutant lines respectively. The single major gene (Def) controlling this phenotype was monogenic and def mutants were characterized and controlled by the homozygous recessive def allele that showed no palisade layers in the hilum region of the seed coat.

4.
BMC Plant Biol ; 9: 76, 2009 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-19549315

RESUMEN

BACKGROUND: In pea seeds (Pisum sativum L.), the Def locus defines an abscission event where the seed separates from the funicle through the intervening hilum region at maturity. A spontaneous mutation at this locus results in the seed failing to abscise from the funicle as occurs in wild type peas. In this work, structural differences between wild type peas that developed a distinct abscission zone (AZ) between the funicle and the seed coat and non-abscission def mutant were characterized. RESULTS: A clear abscission event was observed in wild type pea seeds that were associated with a distinct double palisade layers at the junction between the seed coat and funicle. Generally, mature seeds fully developed an AZ, which was not present in young wild type seeds. The AZ was formed exactly below the counter palisade layer. In contrast, the palisade layers at the junction of the seed coat and funicle were completely absent in the def mutant pea seeds and the cells in this region were seen to be extensions of surrounding parenchymatous cells. CONCLUSION: The Def wild type developed a distinct AZ associated with palisade layer and counterpalisade layer at the junction of the seed coat and funicle while the def mutant pea seed showed non-abscission and an absence of the double palisade layers in the same region. We conclude that the presence of the double palisade layer in the hilum of the wild type pea seeds plays an important structural role in AZ formation by delimiting the specific region between the seed coat and the funicle and may play a structural role in the AZ formation and subsequent detachment of the seed from the funicle.


Asunto(s)
Mutación , Pisum sativum/genética , Semillas/crecimiento & desarrollo , Alelos , Pisum sativum/anatomía & histología , Pisum sativum/crecimiento & desarrollo , Fenotipo , Semillas/anatomía & histología , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA