Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Today Bio ; 25: 100992, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38371467

RESUMEN

Modern in vitro technologies for preclinical research, including organ-on-a-chip, organoids- and assembloid-based systems, have rapidly emerged as pivotal tools for elucidating disease mechanisms and assessing the efficacy of putative therapeutics. In this context, advanced in vitro models of Parkinson's Disease (PD) offer the potential to accelerate drug discovery by enabling effective platforms that recapitulate both physiological and pathological attributes of the in vivo environment. Although these systems often aim at replicating the PD-associated loss of dopaminergic (DA) neurons, only a few have modelled the degradation of dopaminergic pathways as a way to mimic the disruption of downstream regulation mechanisms that define the characteristic motor symptoms of the disease. To this end, assembloids have been successfully employed to recapitulate neuronal pathways between distinct brain regions. However, the investigation and characterization of these connections through neural tracing and electrophysiological analysis remain a technically challenging and time-consuming process. Here, we present a novel bioengineered platform consisting of surface-grown midbrain and striatal organoids at opposite sides of a self-assembled DA pathway. In particular, dopaminergic neurons and striatal GABAergic neurons spontaneously form DA connections across a microelectrode array (MEA), specifically integrated for the real-time monitoring of electrophysiological development and stimuli response. Calcium imaging data showed spiking synchronicity of the two organoids forming the inter-organoid pathways (IOPs) demonstrating that they are functionally connected. MEA recordings confirm a more robust response to the DA neurotoxin 6-OHDA compared to midbrain organoids alone, thereby validating the potential of this technology to generate highly tractable, easily extractable real-time functional readouts to investigate the dysfunctional dopaminergic network of PD patients.

2.
Stem Cells ; 41(11): 1006-1021, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37622655

RESUMEN

Human induced pluripotent stem cells (iPSCs) and iPSC-derived neurons (iPSC-Ns) represent a differentiated modality toward developing novel cell-based therapies for regenerative medicine. However, the successful application of iPSC-Ns in cell-replacement therapies relies on effective cryopreservation. In this study, we investigated the role of ice recrystallization inhibitors (IRIs) as novel cryoprotectants for iPSCs and terminally differentiated iPSC-Ns. We found that one class of IRIs, N-aryl-D-aldonamides (specifically 2FA), increased iPSC post-thaw viability and recovery with no adverse effect on iPSC pluripotency. While 2FA supplementation did not significantly improve iPSC-N cell post-thaw viability, we observed that 2FA cryopreserved iPSC-Ns re-established robust neuronal network activity and synaptic function much earlier compared to CS10 cryopreserved controls. The 2FA cryopreserved iPSC-Ns retained expression of key neuronal specific and terminally differentiated markers and displayed functional electrophysiological and neuropharmacological responses following treatment with neuroactive agonists and antagonists. We demonstrate how optimizing cryopreservation media formulations with IRIs represents a promising strategy to improve functional cryopreservation of iPSCs and post-mitotic iPSC-Ns, the latter of which have been challenging to achieve. Developing IRI enabling technologies to support an effective cryopreservation and an efficiently managed cryo-chain is fundamental to support the delivery of successful iPSC-derived therapies to the clinic.


Asunto(s)
Hielo , Células Madre Pluripotentes Inducidas , Humanos , Hielo/efectos adversos , Neuronas , Criopreservación , Crioprotectores/farmacología , Crioprotectores/química
3.
Neurochem Int ; 158: 105381, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764225

RESUMEN

The goal of this study was to identify cocktails of drugs able to protect cultured rodent cortical neurons against increasing durations of oxygen-glucose deprivation (OGD). As expected, a cocktail composed of an NMDA and AMPA receptor antagonists and a voltage gated Ca2+ channel blocker (MK-801, CNQX and nifedipine, respectively) provided complete neuroprotection against mild OGD. Increasingly longer durations of OGD necessitated increasing the doses of MK-801 and CNQX, until these cocktails ultimately failed to provide neuroprotection against supra-lethal OGD, even at maximal drug concentrations. Surprisingly, supplementation of any of these cocktails with blockers of TRPM7 channels for increasing OGD durations was not neuroprotective, unless these blockers possessed the ability to inhibit NMDA receptors. Supplementation of the maximally effective cocktail with other NMDA receptor antagonists augmented neuroprotection, suggesting insufficient NMDAR blockade by MK-801. Substitution of MK-801 in cocktails with high concentrations of a glycine site NMDA receptor antagonist caused the greatest improvements in neuroprotection, with the more potent SM-31900 superior to L689,560. Substitution of CQNX in cocktails with AMPA receptor antagonists at high concentrations also improved neuroprotection, particularly with the combination of SYM2206 and NBQX. The most neuroprotective cocktail was thus composed of SM-31900, SYM2206, NBQX, nifedipine and the antioxidant trolox. Thus, the cumulative properties of antagonist potency and concentration in a cocktail dictate neuroprotective efficacy. The central target of supra-lethal OGD is excitotoxicity, which must be blocked to the greatest extent possible to minimize ion influx.


Asunto(s)
Fármacos Neuroprotectores , Accidente Cerebrovascular , Canales Catiónicos TRPM , 6-Ciano 7-nitroquinoxalina 2,3-diona , Maleato de Dizocilpina/farmacología , Glucosa , Humanos , Neuroprotección , Fármacos Neuroprotectores/farmacología , Nifedipino/farmacología , Oxígeno/metabolismo , Proteínas Serina-Treonina Quinasas , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/prevención & control
4.
Stem Cell Rev Rep ; 18(1): 259-277, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687385

RESUMEN

Human induced pluripotent stem cell (iPSC)-derived neurons are of interest for studying neurological disease mechanisms, developing potential therapies and deepening our understanding of the human nervous system. However, compared to an extensive history of practice with primary rodent neuron cultures, human iPSC-neurons still require more robust characterization of expression of neuronal receptors and ion channels and functional and predictive pharmacological responses. In this study, we differentiated human amniotic fluid-derived iPSCs into a mixed population of neurons (AF-iNs). Functional assessments were performed by evaluating electrophysiological (patch-clamp) properties and the effect of a panel of neuropharmacological agents on spontaneous activity (multi-electrode arrays; MEAs). These electrophysiological data were benchmarked relative to commercially sourced human iPSC-derived neurons (CNS.4U from Ncardia), primary human neurons (ScienCell™) and primary rodent cortical/hippocampal neurons. Patch-clamp whole-cell recordings showed that mature AF-iNs generated repetitive firing of action potentials in response to depolarizations, similar to that of primary rodent cortical/hippocampal neurons, with nearly half of the neurons displaying spontaneous post-synaptic currents. Immunochemical and MEA-based analyses indicated that AF-iNs were composed of functional glutamatergic excitatory and inhibitory GABAergic neurons. Principal component analysis of MEA data indicated that human AF-iN and rat neurons exhibited distinct pharmacological and electrophysiological properties. Collectively, this study establishes a necessary prerequisite for AF-iNs as a human neuron culture model suitable for pharmacological studies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Benchmarking , Fenómenos Electrofisiológicos , Humanos , Neuronas , Ratas , Roedores
5.
Neurochem Int ; 146: 105035, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33798645

RESUMEN

Exposing cultured cortical neurons to stimulatory agents - the K+ channel blocker 4-aminopyridine (4-ap), and the GABAA receptor antagonist bicuculline (bic) - for 48 h induces down-regulated synaptic scaling, and preconditions neurons to withstand subsequent otherwise lethal 'stroke-in-a-dish' insults; however, the degree to which usual neuronal function remains is unknown. As a result, multi-electrode array and patch-clamp electrophysiological techniques were employed to characterize hallmarks of spontaneous synaptic activity over a 12-day preconditioning/insult experiment. Spiking frequency increased 8-fold immediately upon 4-ap/bic treatment but declined within the 48 h treatment window to sub-baseline levels that persisted long after washout. Preconditioning resulted in key markers of network activity - spiking frequency, bursting and avalanches - being impervious to an insult. Surprisingly, preconditioning resulted in higher peak NMDA mEPSC amplitudes, resulting in a decrease in the ratio of AMPA:NMDA mEPSC currents, suggesting a relative increase in synaptic NMDA receptors. An investigation of a broad mRNA panel of excitatory and inhibitory signaling mediators indicated preconditioning rapidly up-regulated GABA synthesis (GAD67) and BDNF, followed by up-regulation of neuronal activity-regulated pentraxin and down-regulation of presynaptic glutamate release (VGLUT1). Preconditioning also enhanced surface expression of GLT-1, which persisted following an insult. Overall, preconditioning resulted in a reduced spiking frequency which was impervious to subsequent exposure to 'stroke-in-a-dish' insults, a phenotype initiated predominantly by up-regulation of inhibitory neurotransmission, a lower neuronal postsynaptic AMPA: NMDA receptor ratio, and trafficking of GLT-1 to astrocyte plasma membranes.


Asunto(s)
Antagonistas del GABA/toxicidad , Precondicionamiento Isquémico/métodos , Neuronas/metabolismo , Bloqueadores de los Canales de Potasio/toxicidad , Accidente Cerebrovascular/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/patología , Corteza Cerebral/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/patología , Hipocampo/fisiología , Neuronas/efectos de los fármacos , Neuronas/patología , Embarazo , Ratas , Ratas Sprague-Dawley , Accidente Cerebrovascular/inducido químicamente , Accidente Cerebrovascular/patología
6.
Eur J Pharmacol ; 823: 96-104, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29408093

RESUMEN

Synthetic cannabinoids are marketed as legal alternatives to Δ9-THC, and are a growing worldwide concern as these drugs are associated with severe adverse effects. Unfortunately, insufficient information regarding the physiological and pharmacological effects of emerging synthetic cannabinoids (ESCs) makes their regulation by government authorities difficult. One strategy used to evade regulation is to distribute isomers of regulated synthetic cannabinoids. This study characterized the pharmacological properties of a panel of ESCs in comparison to Δ9-THC, as well as six JWH-122 isomers relative to its parent compound (JWH-122-4). Two cell-based assays were used to determine the potency and efficacy of ESCs and a panel of reference cannabinoids. HEK293T cells were transfected with human cannabinoid receptor 1 (CB1) and pGloSensor-22F, and the inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live cells. All ESCs examined were classified as agonists, with the following rank order of potency: Win 55,212-2 > CP 55,940 > JWH-122-4 > Δ9-THC ≈ RCS-4 ≈ THJ-2201 > JWH-122-5 > JWH-122-7 > JWH-122-2 ≈ AB-CHMINACA > JWH-122-8 > JWH-122-6 > JWH-122-3. Evaluation of ESC-stimulated Ca2+ transients in cultured rat primary hippocampal neurons confirmed the efficacy of four of the most potent ESCs (JWH-122-4, JWH-122-5, JWH-122-7 and AB-CHMINACA). This work helps regulatory agencies make informed decisions concerning these poorly characterized recreational drugs.


Asunto(s)
Cannabinoides/farmacología , Hipocampo/citología , Indazoles/farmacología , Indoles/química , Naftalenos/química , Neuronas/efectos de los fármacos , Valina/análogos & derivados , Cannabinoides/química , Células HEK293 , Humanos , Indazoles/química , Isomerismo , Naftalenos/farmacología , Valina/química , Valina/farmacología
7.
Eur J Pharmacol ; 786: 148-160, 2016 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-27262380

RESUMEN

Activation of cannabinoid receptor 1 (CB1) inhibits synaptic transmission in hippocampal neurons. The goal of this study was to evaluate the ability of benchmark and emerging synthetic cannabinoids to suppress neuronal activity in vitro using two complementary techniques, Ca(2+) spiking and multi-electrode arrays (MEAs). Neuron culture and fluorescence imaging conditions were extensively optimized to provide maximum sensitivity for detection of suppression of neural activity by cannabinoids. The neuronal Ca(2+) spiking frequency was significantly suppressed within 10min by the prototypic aminoalkylindole cannabinoid, WIN 55,212-2 (10µM). Suppression by WIN 55,212-2 was not improved by pharmacological intervention with signaling pathways known to interfere with CB1 signaling. The naphthoylindole CB1 agonist, JWH-018 suppressed Ca(2+) spiking at a lower concentration (2.5µM), and the CB1 antagonist rimonabant (5µM), reversed this suppression. In the MEA assay, the ability of synthetic CB1 agonists to suppress spontaneous electrical activity of hippocampal neurons was evaluated over 80min sessions. All benchmark (WIN 55,212-2, HU-210, CP 55,940 and JWH-018) and emerging synthetic cannabinoids (XLR-11, JWH-250, 5F-PB-22, AB-PINACA and MAM-2201) suppressed neural activity at a concentration of 10µM; furthermore, several of these compounds also significantly suppressed activity at 1µM concentrations. Rimonabant partially reversed spiking suppression of 5F-PB-22 and, to a lesser extent, of MAM-2201, supporting CB1-mediated involvement, although the inactive WIN 55,212-3 also partially suppressed activity. Taken together, synthetic cannabinoid CB1-mediated suppression of neuronal activity was detected using Ca(2+) spiking and MEAs.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Cannabinoides/farmacología , Electrofisiología/instrumentación , Neuronas/citología , Neuronas/efectos de los fármacos , Animales , Cannabinoides/síntesis química , Electrodos , Femenino , Hipocampo/citología , Embarazo , Ratas
8.
Neuropharmacology ; 105: 533-542, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26867506

RESUMEN

Preconditioning is a well established neuroprotective modality. However, the mechanism and relative efficacy of neuroprotection between diverse preconditioners is poorly defined. Cultured neurons were preconditioned by 4-aminopyridine and bicuculline (4-AP/bic), rendering neurons tolerant to normally lethal (sufficient to kill most neurons) oxygen-glucose deprivation (OGD) or a chemical OGD-mimic, ouabain/TBOA, by suppression of extracellular glutamate (glutamateex) elevations. However, subjecting preconditioned neurons to longer-duration supra-lethal insults caused neurotoxic glutamateex elevations, thereby identifying a 'ceiling' to neuroprotection. Neuroprotective 'rescue' of neurons could be obtained by administration of an NMDA receptor antagonist, MK-801, just before glutamateex rose during these supra-lethal insults. Next, we evaluated if these concepts of glutamateex suppression during lethal OGD, and a neuroprotective ceiling requiring MK-801 rescue under supra-lethal OGD, extended to the preconditioning field. In screening a panel of 42 diverse putative preconditioners, neuroprotection against normally lethal OGD was observed in 12 cases, which correlated with glutamateex suppression, both of which could be reversed, either by the inclusion of a glutamate uptake inhibitor (TBOA, to increase glutamateex levels) during OGD or by exposure to supra-lethal OGD. Administrating MK-801 during the latter stages of supra-lethal OGD again rescued neurons, although to varying degrees dependent on the preconditioning agent. Thus, 'stress-testing' against the harshest ischemic-like insults yet tested identifies the most efficacious preconditioners, which dictates how early MK-801 needs to be administered during the insult in order to maintain neuroprotection. Preconditioning delays a neurotoxic rise in glutamateex levels, thereby 'buying time' for acute anti-excitotoxic pharmacologic rescue.


Asunto(s)
Hipoxia de la Célula/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Glucosa/deficiencia , Precondicionamiento Isquémico , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , 4-Aminopiridina , Animales , Ácido Aspártico , Bicuculina , Hipoxia de la Célula/fisiología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiopatología , Técnicas de Cocultivo , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Precondicionamiento Isquémico/métodos , Neuronas/fisiología , Ouabaína , Ratas , Accidente Cerebrovascular , Factores de Tiempo
9.
Sci Rep ; 5: 17718, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26648112

RESUMEN

Neuronal activity in vitro exhibits network bursts characterized by brief periods of increased spike rates. Recent work shows that a subpopulation of neurons reliably predicts the occurrence of network bursts. Here, we examined the role of burst predictors in cultures undergoing an in vitro model of cerebral ischemia. Dissociated primary cortical neurons were plated on multielectrode arrays and spontaneous activity was recorded at 17 days in vitro (DIV). This activity was characterized by neuronal avalanches where burst statistics followed a power law. We identified burst predictors as channels that consistently fired immediately prior to network bursts. The timing of these predictors relative to bursts followed a skewed distribution that differed sharply from a null model based on branching ratio. A portion of cultures were subjected to an excitotoxic insult (DIV 18). Propidium iodine and fluorescence imaging confirmed cell death in these cultures. While the insult did not alter the distribution of avalanches, it resulted in alterations in overall spike rates. Burst predictors, however, maintained baseline levels of activity. The resilience of burst predictors following excitotoxic insult suggests a key role of these units in maintaining network activity following injury, with implications for the selective effects of ischemia in the brain.


Asunto(s)
Potenciales de Acción , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Ácido Glutámico/metabolismo , Neuronas/metabolismo , Potenciales de Acción/efectos de los fármacos , Algoritmos , Animales , Muerte Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ácido Glutámico/toxicidad , Modelos Biológicos , Neuronas/patología , Ratas , Transmisión Sináptica
10.
Sci Rep ; 5: 7890, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25601765

RESUMEN

Semaphorin 3A (Sema3A) increased significantly in mouse brain following cerebral ischemia. However, the role of Sema3A in stroke brain remains unknown. Our aim was to determine wether Sema3A functions as a vascular permeability factor and contributes to ischemic brain damage. Recombinant Sema3A injected intradermally to mouse skin, or stereotactically into the cerebral cortex, caused dose- and time-dependent increases in vascular permeability, with a degree comparable to that caused by injection of a known vascular permeability factor vascular endothelial growth factor receptors (VEGF). Application of Sema3A to cultured endothelial cells caused disorganization of F-actin stress fibre bundles and increased endothelial monolayer permeability, confirming Sema3A as a permeability factor. Sema3A-mediated F-actin changes in endothelial cells were through binding to the neuropilin2/VEGFR1 receptor complex, which in turn directly activates Mical2, a F-actin modulator. Down-regulation of Mical2, using specific siRNA, alleviated Sema3A-induced F-actin disorganization, cellular morphology changes and endothelial permeability. Importantly, ablation of Sema3A expression, cerebrovascular permeability and brain damage were significantly reduced in response to transient middle cerebral artery occlusion (tMCAO) and in a mouse model of cerebral ischemia/haemorrhagic transformation. Together, these studies demonstrated that Sema3A is a key mediator of cerebrovascular permeability and contributes to brain damage caused by cerebral ischemia.


Asunto(s)
Lesiones Encefálicas/genética , Permeabilidad Capilar/genética , Semaforina-3A/genética , Accidente Cerebrovascular/genética , Actinas/genética , Actinas/metabolismo , Animales , Apoptosis/genética , Lesiones Encefálicas/fisiopatología , Isquemia Encefálica/genética , Isquemia Encefálica/fisiopatología , Permeabilidad Capilar/fisiología , Corteza Cerebral/lesiones , Corteza Cerebral/patología , Proteínas del Citoesqueleto/biosíntesis , Modelos Animales de Enfermedad , Humanos , Ratones , Proteínas de Microfilamentos , Neuropilina-2/metabolismo , Semaforina-3A/administración & dosificación , Accidente Cerebrovascular/fisiopatología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
11.
Sci Rep ; 3: 1350, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23443259

RESUMEN

CRMP proteins play critical regulatory roles during semaphorin-mediated neurite outgrowth, neuronal differentiation and death. Albeit having a high degree of structure and sequence resemblance to that of liver dihydropyrimidinase, purified rodent brain CRMPs do not hydrolyze dihydropyrimidinase substrates. Here we found that mouse CRMP3 has robust histone H4 deacetylase activity. During excitotoxicity-induced mouse neuronal death, calpain-cleaved, N-terminally truncated CRMP3 undergoes nuclear translocation to cause nuclear condensation through deacetylation of histone H4. CRMP3-mediated deacetylation of H4 leads to de-repression of the E2F1 gene transcription and E2F1-dependent neuronal death. These studies revealed a novel mechanism of CRMP3 in neuronal death. Together with previous well established bodies of literature that inhibition of histone deacetylase activity provides neuroprotection, we envisage that inhibition of CRMP3 may represent a novel therapeutic approach towards excitotoxicity-induced neuronal death.


Asunto(s)
Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Histonas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Acetilación , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/genética , Línea Celular , Factor de Transcripción E2F1/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Ácido Glutámico/farmacología , Histona Desacetilasas/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Unión Proteica , Transporte de Proteínas/efectos de los fármacos , Tubulina (Proteína)
12.
Biosci Trends ; 6(4): 183-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23006965

RESUMEN

Membrane rafts, rich in sphingolipids and cholesterol, play an important role in neuronal membrane domain-specific signaling events, maintaining synapses and dendritic spines. The purpose of this study is to examine the neuronal response to membrane raft disruption. Membrane rafts of 8 DIV primary neuronal cultures were isolated based on the resistance to Triton X-100 and ability to float in sucrose gradients. Membrane rafts from primary cortical neurons were also imaged using the membrane raft marker, cholera toxin subunit-B (CTxB), and were co-immunolabelled with the dendritic microtubule associated protein marker, MAP-2, the dendritic and axonal microtubule protein, ß-III-Tubulin, and the axonal microtubule protein, Tau. Exposure of cortical neurons to either the cholesterol depleting compound, methyl-beta-cyclodextrin (MBC), or to the glycosphingolipid metabolism inhibiting agent D-threo-1-phenyl-2-decanoylamino-3- morpholino-1-propanol (D-PDMP), resulted in neuritic retraction prior to the appearance of neuronal death. Further investigation into the effects of MBC revealed a pronounced perturbation of microtubule protein association with membrane rafts during neuritic retraction. Interestingly, stabilizing microtubules with Paclitaxel did not prevent MBC induced neuritic retraction, suggesting that neuritic retraction occurred independently of microtubule disassembly and that microtubule association with membrane rafts is critical for maintaining neuritic stability. Overall, the data indicated that membrane rafts play an important role in neurite stability and neuronal viability.


Asunto(s)
Corteza Cerebral/patología , Microdominios de Membrana/metabolismo , Neuritas/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas del Citoesqueleto/metabolismo , Microdominios de Membrana/efectos de los fármacos , Ratones , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Morfolinas/farmacología , Neuritas/efectos de los fármacos , Imagen de Lapso de Tiempo , beta-Ciclodextrinas/farmacología
13.
J Neurochem ; 122(4): 764-74, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22681613

RESUMEN

Microglia are the 'immune cells' of the brain and their activation plays a vital role in the pathogenesis of many neurodegenerative diseases. Activated microglia produce high levels of pro-inflammatory factors, such as TNFα, causing neurotoxicity. Here we show that vimentin played a key role in controlling microglia activation and neurotoxicity during cerebral ischemia. Deletion of vimentin expression significantly impaired microglia activation in response to LPS in vitro and transient focal cerebral ischemia in vivo. Reintroduction of the functional vimentin gene back into vimentin knockout microglia restored their response to LPS. More importantly, impairment of microglia activation significantly protected brain from cerebral ischemia-induced neurotoxicity. Collectively, we demonstrate a previously unknown function of vimentin in controlling microglia activation.


Asunto(s)
Isquemia Encefálica/patología , Activación de Macrófagos/fisiología , Microglía/fisiología , Vimentina/fisiología , Animales , Western Blotting , Encéfalo/patología , Separación Celular , Técnica del Anticuerpo Fluorescente Indirecta , Procesamiento de Imagen Asistido por Computador , Etiquetado Corte-Fin in Situ , Infarto de la Arteria Cerebral Media/patología , Ataque Isquémico Transitorio/patología , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microscopía Confocal , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Plásmidos/efectos de los fármacos , Plásmidos/genética , Daño por Reperfusión/patología , Tetraciclina/farmacología , Vimentina/genética
14.
J Neurochem ; 122(2): 470-81, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22607164

RESUMEN

This study determined how preconditioned neurons responded to oxygen-glucose deprivation (OGD) to result in neuroprotection instead of neurotoxicity. Neurons preconditioned using chronically elevated synaptic activity displayed suppressed elevations in extracellular glutamate ([glutamateex ]) and intracellular Ca(2+) (Ca(2+) in ) during OGD. The glutamate uptake inhibitor TBOA induced neurotoxicity, but at a longer OGD duration for preconditioned cultures, suggestive of delayed up-regulation of transporter activity relative to non-preconditioned cultures. This delay was attributed to a critically attenuated release of glutamate, based on tolerance observed against insults mimicking key neurotoxic signaling during OGD (OGD-mimetics). Specifically, in the presence of TBOA, preconditioned neurons displayed potent protection to the OGD-mimetics: ouabain (a Na(+) /K(+) ATPase inhibitor), high 55 mM KCl extracellular buffer (plasma membrane depolarization), veratridine (a Na(+) ionophore), and paraquat (intracellular superoxide producer), which correlated with suppressed [glutamateex ] elevations in the former two insults. Tolerance by preconditioning was reversed by manipulations that increased [glutamateex ], such as by exposure to TBOA or GABAA receptor agonists during OGD, or by exposure to exogenous NMDA or glutamate. Pre-synaptic suppression of neuronal glutamate release by preconditioning, possibly via suppressed exocytic release, represents a key convergence point in neuroprotection during exposure to OGD and OGD-mimetics.


Asunto(s)
Ácido Glutámico/metabolismo , Isquemia/patología , Precondicionamiento Isquémico/métodos , Neuronas/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/fisiología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Tamaño de la Célula , Células Cultivadas , Relación Dosis-Respuesta a Droga , Transportador 2 de Aminoácidos Excitadores/antagonistas & inhibidores , Femenino , Glucosa/deficiencia , Isquemia/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Receptores de GABA/efectos de los fármacos , Receptores Presinapticos/efectos de los fármacos , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Zinc/metabolismo , Ácido gamma-Aminobutírico/metabolismo
15.
J Biol Chem ; 285(13): 9908-9918, 2010 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-20133938

RESUMEN

Neuropilins (NRPs) are receptors for the major chemorepulsive axonal guidance cue semaphorins (Sema). The interaction of Sema3A/NRP1 during development leads to the collapse of growth cones. Here we show that Sema3A also induces death of cultured cortical neurons through NRP1. A specific NRP1 inhibitory peptide ameliorated Sema3A-evoked cortical axonal retraction and neuronal death. Moreover, Sema3A was also involved in cerebral ischemia-induced neuronal death. Expression levels of Sema3A and NRP1, but not NRP2, were significantly increased early during brain reperfusion following transient focal cerebral ischemia. NRP1 inhibitory peptide delivered to the ischemic brain was potently neuroprotective and prevented the loss of motor functions in mice. The integrity of the injected NRP1 inhibitory peptide into the brain remained unchanged, and the intact peptide permeated the ischemic hemisphere of the brain as determined using MALDI-MS-based imaging. Mechanistically, NRP1-mediated axonal collapse and neuronal death is through direct and selective interaction with the cytoplasmic tyrosine kinase Fer. Fer RNA interference effectively attenuated Sema3A-induced neurite retraction and neuronal death in cortical neurons. More importantly, down-regulation of Fer expression using Fer-specific RNA interference attenuated cerebral ischemia-induced brain damage. Together, these studies revealed a previously unknown function of NRP1 in signaling Sema3A-evoked neuronal death through Fer in cortical neurons.


Asunto(s)
Neuropilina-1/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Semaforina-3A/química , Animales , Encéfalo/metabolismo , Isquemia Encefálica/patología , Muerte Celular , Regulación Enzimológica de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuropilina-1/química , Péptidos/química , Unión Proteica , Interferencia de ARN , Transducción de Señal
16.
J Neurochem ; 111(3): 870-81, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19735446

RESUMEN

Intracellular calcium influx through NMDA receptors triggers a cascade of deleterious signaling events which lead to neuronal death in neurological conditions such as stroke. However, it is not clear as to the molecular mechanism underlying early damage response from axons and dendrites which are important in maintaining a network essential for the survival of neurons. Here, we examined changes of axons treated with glutamate and showed the appearance of betaIII-tubulin positive varicosities on axons before the appearance of neuronal death. Dizocilpine blocked the occurrence of varicosities on axons suggesting that these microstructures were mediated by NMDA receptor activities. Despite early increased expression of pCaMKII and pMAPK after just 10 min of glutamate treatment, only inhibitors to Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and calpain prevented the occurrence of axonal varicosities. In contrast, inhibitors to Rho kinase, mitogen-activated protein kinase and phosphoinositide 3-kinase were not effective, nor were they able to rescue neurons from death, suggesting CaMKII and calpain are important in axon survival. Activated CaMKII directly phosphorylates collapsin response mediator protein (CRMP) 2 which is independent of calpain-mediated cleavage of CRMP2. Over-expression of CRMP2, but not the phosphorylation-resistant mutant CRMP2-T555A, increased axonal resistance to glutamate toxicity with reduced numbers of varicosities. The levels of both pCRMP2 and pCaMKII were also increased robustly within early time points in ischemic brains and which correlated with the appearance of axonal varicosities in the ischemic neurons. Collectively, these studies demonstrated an important role for CaMKII in modulating the integrity of axons through CRMP2 during excitotoxicity-induced neuronal death.


Asunto(s)
Axones/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ácido Glutámico/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Muerte Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Embrión de Mamíferos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Proteínas Fluorescentes Verdes/genética , Infarto de la Arteria Cerebral Media/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Endogámicos C57BL , Mutación/genética , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Semaforina-3A/farmacología , Transducción de Señal/efectos de los fármacos , Transfección/métodos , Tubulina (Proteína)/metabolismo
17.
Exp Cell Res ; 315(16): 2856-68, 2009 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-19559021

RESUMEN

Collapsin response mediator proteins (CRMPs) are key modulators of cytoskeletons during neurite outgrowth in response to chemorepulsive guidance molecules. However, their roles in adult injured neurons are not well understood. We previously demonstrated that CRMP3 underwent calcium-dependent N-terminal protein cleavage during excitotoxicity-induced neurite retraction and neuronal death. Here, we report findings that the full-length CRMP3 inhibits tubulin polymerization and neurite outgrowth in cultured mature cerebellar granule neurons, while the N-terminal truncated CRMP3 underwent nuclear translocation and caused a significant nuclear condensation. The N-terminal truncated CRMP3 underwent nuclear translocation through nuclear pores. Nuclear protein pull-down assay and mass spectrometry analysis showed that the N-terminal truncated CRMP3 was associated with nuclear vimentin. In fact, nuclear-localized CRMP3 co-localized with vimentin during glutamate-induced excitotoxicity. However, the association between the truncated CRMP3 and vimentin was not critical for nuclear condensation and neurite outgrowth since over-expression of truncated CRMP3 in vimentin null neurons did not alleviate nuclear condensation and neurite outgrowth inhibition. Together, these studies showed CRMP3's role in attenuating neurite outgrowth possibility through inhibiting microtubule polymerization, and also revealed its novel association with vimentin during nuclear condensation prior to neuronal death.


Asunto(s)
Calpaína/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Isoformas de Proteínas/metabolismo , Animales , Línea Celular , Núcleo Celular/metabolismo , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Neuronas/metabolismo , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vimentina/metabolismo
18.
Biochem Biophys Res Commun ; 367(1): 109-15, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18162177

RESUMEN

Strategies to provide neuroprotection and to promote regenerative axonal outgrowth in the injured brain are thwarted by the plethora of axon growth inhibitors and the ligand promiscuity of some of their receptors. Especially, new neurons derived from ischemia-stimulated neurogenesis must integrate this multitude of inhibitory molecular cues, generated as a result of cortical damage, into a functional response. More often than not the response is one of growth cone collapse, axonal retraction and neuronal death. Therefore, characterization of the expression of inhibitory molecules in long-term surviving ischemic brains following stroke is important for designing selective therapeutics. Here, we describe a long-term recovery mouse model for cerebral ischemia in which a brief transient occlusion of the middle cerebral artery (30min) was followed by up to 30 days of long-term reperfusion. Significantly decreased grip strength motor function and increased expression of one of the major repulsive guidance cues, Semaphorin 3A (Sema3A) and its receptor Neuropilin1 (NRP1) occurred in brains of these mice. Interestingly, increased Doublecortin (DCX) expression occurred only in the lateral ventricular wall zone, but not in the dentate gyrus granule cell layer on the ischemic side of the brain. Importantly, no DCX positive cells were detected in the infarct core region after 30d ischemic recovery. Collectively, these studies demonstrated the sustained elevation of Sema3A/NRP1 expression in the ischemic territory, which may contribute to the inhibitory microenvironment responsible for preventing new neurons from entering the infarct area. This model will be of use as a platform for testing anti-inhibitory therapies to stroke.


Asunto(s)
Isquemia Encefálica , Regulación de la Expresión Génica/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Neuropéptidos/metabolismo , Neuropilina-1/metabolismo , Semaforina-3A/metabolismo , Animales , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/terapia , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Regulación de la Expresión Génica/genética , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Modelos Biológicos , Neuropéptidos/genética , Neuropilina-1/genética , Semaforina-3A/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia , Factores de Tiempo , Resultado del Tratamiento , Regulación hacia Arriba/genética , Regulación hacia Arriba/fisiología
19.
Eur J Neurosci ; 26(4): 801-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17672855

RESUMEN

Collapsin response mediator proteins (CRMPs) are important brain-specific proteins with distinct functions in modulating growth cone collapse and axonal guidance during brain development. Our previous studies have shown that calpain cleaves CRMP3 in the adult mouse brain during cerebral ischemia [S.T. Hou et al. (2006) J. Neurosci., 26, 2241-2249]. Here, the expression of all CRMP family members (1-5) was examined in mouse brains that were subjected to middle cerebral artery occlusion. Among the five CRMPs, the expressions of CRMP1, CRMP3 and CRMP5 were the most abundant in the cerebral cortex and all CRMPs were targeted for cleavage by ischemia-activated calpain. Sub-cellular fractionation analysis showed that cleavage of CRMPs by calpain occurred not only in the cytoplasm but also in the synaptosomes isolated from ischemic brains. Moreover, synaptosomal CRMPs appeared to be at least one-fold more sensitive to cleavage compared with those isolated from the cytosolic fraction in an in-vitro experiment, suggesting that synaptosomal CRMPs are critical targets during cerebral ischemia-induced neuronal injury. Finally, the expression of all CRMPs was colocalized with TUNEL-positive neurons in the ischemic mouse brain, which further supports the notion that CRMPs may play an important role in neuronal death following cerebral ischemia. Collectively, these studies demonstrated that CRMPs are targets of calpains during cerebral ischemia and they also highlighted an important potential role that CRMPs may play in modulating ischemic neuronal death.


Asunto(s)
Amidohidrolasas/metabolismo , Isquemia Encefálica/metabolismo , Calpaína/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Western Blotting , Muerte Celular/fisiología , Células Cultivadas , Cerebelo/citología , Cerebelo/fisiología , Gránulos Citoplasmáticos/fisiología , Interpretación Estadística de Datos , Hidrolasas , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Infarto de la Arteria Cerebral Media/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos , Neuronas/fisiología , Fracciones Subcelulares/metabolismo , Sinaptosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA