Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 1246, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071270

RESUMEN

Sample preservation often impedes efforts to generate high-quality reference genomes or pangenomes for Earth's more than 2 million plant and animal species due to nucleotide degradation. Here we compare the impacts of storage methods including solution type, temperature, and time on DNA quality and Oxford Nanopore long-read sequencing quality in 9 fish and 4 plant species. We show 95% ethanol largely protects against degradation for fish blood (22 °C, ≤6 weeks) and plant tissue (4 °C, ≤3 weeks). From this furthest storage timepoint, we assemble high-quality reference genomes of 3 fish and 2 plant species with contiguity (contig N50) and completeness (BUSCO) that achieve the Vertebrate Genome Project benchmarking standards. For epigenetic applications, we also report methylation frequency compared to liquid nitrogen control. The results presented here remove the necessity for cryogenic storage in many long read applications and provide a framework for future studies focused on sampling in remote locations, which may represent a large portion of the future sequencing of novel organisms.


Asunto(s)
Genoma , Genómica , Animales , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Peces/genética
2.
Bioinformatics ; 39(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37846049

RESUMEN

SUMMARY: Pangenomes are replacing single reference genomes as the definitive representation of DNA sequence within a species or clade. Pangenome analysis predominantly leverages graph-based methods that require computationally intensive multiple genome alignments, do not scale to highly complex eukaryotic genomes, limit their scope to identifying structural variants (SVs), or incur bias by relying on a reference genome. Here, we present PanKmer, a toolkit designed for reference-free analysis of pangenome datasets consisting of dozens to thousands of individual genomes. PanKmer decomposes a set of input genomes into a table of observed k-mers and their presence-absence values in each genome. These are stored in an efficient k-mer index data format that encodes SNPs, INDELs, and SVs. It also includes functions for downstream analysis of the k-mer index, such as calculating sequence similarity statistics between individuals at whole-genome or local scales. For example, k-mers can be "anchored" in any individual genome to quantify sequence variability or conservation at a specific locus. This facilitates workflows with various biological applications, e.g. identifying cases of hybridization between plant species. PanKmer provides researchers with a valuable and convenient means to explore the full scope of genetic variation in a population, without reference bias. AVAILABILITY AND IMPLEMENTATION: PanKmer is implemented as a Python package with components written in Rust, released under a BSD license. The source code is available from the Python Package Index (PyPI) at https://pypi.org/project/pankmer/ as well as Gitlab at https://gitlab.com/salk-tm/pankmer. Full documentation is available at https://salk-tm.gitlab.io/pankmer/.


Asunto(s)
Genoma , Programas Informáticos , Humanos , Eucariontes , Documentación , Análisis de Secuencia de ADN/métodos
3.
PLoS Genet ; 19(6): e1010759, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289818

RESUMEN

Gene regulation is highly cell type-specific and understanding the function of non-coding genetic variants associated with complex traits requires molecular phenotyping at cell type resolution. In this study we performed single nucleus ATAC-seq (snATAC-seq) and genotyping in peripheral blood mononuclear cells from 13 individuals. Clustering chromatin accessibility profiles of 96,002 total nuclei identified 17 immune cell types and sub-types. We mapped chromatin accessibility QTLs (caQTLs) in each immune cell type and sub-type using individuals of European ancestry which identified 6,901 caQTLs at FDR < .10 and 4,220 caQTLs at FDR < .05, including those obscured from assays of bulk tissue such as with divergent effects on different cell types. For 3,941 caQTLs we further annotated putative target genes of variant activity using single cell co-accessibility, and caQTL variants were significantly correlated with the accessibility level of linked gene promoters. We fine-mapped loci associated with 16 complex immune traits and identified immune cell caQTLs at 622 candidate causal variants, including those with cell type-specific effects. At the 6q15 locus associated with type 1 diabetes, in line with previous reports, variant rs72928038 was a naïve CD4+ T cell caQTL linked to BACH2 and we validated the allelic effects of this variant on regulatory activity in Jurkat T cells. These results highlight the utility of snATAC-seq for mapping genetic effects on accessible chromatin in specific cell types.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Humanos , Cromatina/genética , Herencia Multifactorial , Leucocitos Mononucleares , Sitios de Carácter Cuantitativo/genética
4.
New Phytol ; 239(1): 116-131, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37149888

RESUMEN

Over 15 families of aquatic plants are known to use a strategy of developmental switching upon environmental stress to produce dormant propagules called turions. However, few molecular details for turion biology have been elucidated due to the difficulties in isolating high-quality nucleic acids from this tissue. We successfully developed a new protocol to isolate high-quality transcripts and carried out RNA-seq analysis of mature turions from the Greater Duckweed Spirodela polyrhiza. Comparison of turion transcriptomes to that of fronds, the actively growing leaf-like tissue, were carried out. Bioinformatic analysis of high confidence, differentially expressed transcripts between frond and mature turion tissues revealed major pathways related to stress tolerance, starch and lipid metabolism, and dormancy that are mobilized to reprogram frond meristems for turion differentiation. We identified the key genes that are likely to drive starch and lipid accumulation during turion formation, as well as those in pathways for starch and lipid utilization upon turion germination. Comparison of genome-wide cytosine methylation levels also revealed evidence for epigenetic changes in the formation of turion tissues. Similarities between turions and seeds provide evidence that key regulators for seed maturation and germination were retooled for their function in turion biology.


Asunto(s)
Araceae , Germinación , Germinación/genética , Araceae/genética , Genómica , Almidón/metabolismo , Lípidos , Latencia en las Plantas/genética
5.
Cell Genom ; 2(12): 100214, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36778047

RESUMEN

We combined functional genomics and human genetics to investigate processes that affect type 1 diabetes (T1D) risk by mediating beta cell survival in response to proinflammatory cytokines. We mapped 38,931 cytokine-responsive candidate cis-regulatory elements (cCREs) in beta cells using ATAC-seq and snATAC-seq and linked them to target genes using co-accessibility and HiChIP. Using a genome-wide CRISPR screen in EndoC-ßH1 cells, we identified 867 genes affecting cytokine-induced survival, and genes promoting survival and up-regulated in cytokines were enriched at T1D risk loci. Using SNP-SELEX, we identified 2,229 variants in cytokine-responsive cCREs altering transcription factor (TF) binding, and variants altering binding of TFs regulating stress, inflammation, and apoptosis were enriched for T1D risk. At the 16p13 locus, a fine-mapped T1D variant altering TF binding in a cytokine-induced cCRE interacted with SOCS1, which promoted survival in cytokine exposure. Our findings reveal processes and genes acting in beta cells during inflammation that modulate T1D risk.

6.
PLoS Genet ; 17(5): e1009531, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33983929

RESUMEN

Glucocorticoids are key regulators of glucose homeostasis and pancreatic islet function, but the gene regulatory programs driving responses to glucocorticoid signaling in islets and the contribution of these programs to diabetes risk are unknown. In this study we used ATAC-seq and RNA-seq to map chromatin accessibility and gene expression from eleven primary human islet samples cultured in vitro with the glucocorticoid dexamethasone at multiple doses and durations. We identified thousands of accessible chromatin sites and genes with significant changes in activity in response to glucocorticoids. Chromatin sites up-regulated in glucocorticoid signaling were prominently enriched for glucocorticoid receptor binding sites and up-regulated genes were enriched for ion transport and lipid metabolism, whereas down-regulated chromatin sites and genes were enriched for inflammatory, stress response and proliferative processes. Genetic variants associated with glucose levels and T2D risk were enriched in glucocorticoid-responsive chromatin sites, including fine-mapped variants at 51 known signals. Among fine-mapped variants in glucocorticoid-responsive chromatin, a likely casual variant at the 2p21 locus had glucocorticoid-dependent allelic effects on beta cell enhancer activity and affected SIX2 and SIX3 expression. Our results provide a comprehensive map of islet regulatory programs in response to glucocorticoids through which we uncover a role for islet glucocorticoid signaling in mediating genetic risk of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Glucocorticoides/metabolismo , Islotes Pancreáticos/metabolismo , Transducción de Señal , Animales , Glucemia/metabolismo , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Diabetes Mellitus Tipo 2/sangre , Humanos , Ratones
7.
Elife ; 102021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33544077

RESUMEN

Genetic variants associated with type 2 diabetes (T2D) risk affect gene regulation in metabolically relevant tissues, such as pancreatic islets. Here, we investigated contributions of regulatory programs active during pancreatic development to T2D risk. Generation of chromatin maps from developmental precursors throughout pancreatic differentiation of human embryonic stem cells (hESCs) identifies enrichment of T2D variants in pancreatic progenitor-specific stretch enhancers that are not active in islets. Genes associated with progenitor-specific stretch enhancers are predicted to regulate developmental processes, most notably tissue morphogenesis. Through gene editing in hESCs, we demonstrate that progenitor-specific enhancers harboring T2D-associated variants regulate cell polarity genes LAMA1 and CRB2. Knockdown of lama1 or crb2 in zebrafish embryos causes a defect in pancreas morphogenesis and impairs islet cell development. Together, our findings reveal that a subset of T2D risk variants specifically affects pancreatic developmental programs, suggesting that dysregulation of developmental processes can predispose to T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Epigenoma , Péptidos y Proteínas de Señalización Intracelular/genética , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Animales , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
8.
Nat Commun ; 10(1): 2078, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064983

RESUMEN

Genetic variants affecting pancreatic islet enhancers are central to T2D risk, but the gene targets of islet enhancer activity are largely unknown. We generate a high-resolution map of islet chromatin loops using Hi-C assays in three islet samples and use loops to annotate target genes of islet enhancers defined using ATAC-seq and published ChIP-seq data. We identify candidate target genes for thousands of islet enhancers, and find that enhancer looping is correlated with islet-specific gene expression. We fine-map T2D risk variants affecting islet enhancers, and find that candidate target genes of these variants defined using chromatin looping and eQTL mapping are enriched in protein transport and secretion pathways. At IGF2BP2, a fine-mapped T2D variant reduces islet enhancer activity and IGF2BP2 expression, and conditional inactivation of IGF2BP2 in mouse islets impairs glucose-stimulated insulin secretion. Our findings provide a resource for studying islet enhancer function and identifying genes involved in T2D risk.


Asunto(s)
Cromatina/metabolismo , Diabetes Mellitus Tipo 2/genética , Redes Reguladoras de Genes/genética , Islotes Pancreáticos/metabolismo , Proteínas de Unión al ARN/genética , Adulto , Animales , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina/genética , Diabetes Mellitus Tipo 2/patología , Elementos de Facilitación Genéticos/genética , Femenino , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Islotes Pancreáticos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Conformación Molecular , Sitios de Carácter Cuantitativo/genética , Proteínas de Unión al ARN/metabolismo
9.
Hum Mol Genet ; 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30407494

RESUMEN

The extent to which shared genetic risk contributes to T1D and T2D etiology is unknown. In this study, we generated T1D association data of 15k samples imputed into the HRC panel which we compared to published T2D association data imputed into 1000 Genomes. The effects of genetic variants on T1D and T2D risk at known loci and genome-wide were positively correlated. Increased risk of T1D and T2D was correlated with higher fasting insulin and glucose level and decreased birth weight, among other correlations. Variants with T1D and T2D association were further enriched in pancreatic, adipose, B cell, and endoderm regulatory elements. We fine-mapped causal variants at known loci and found evidence for co-localization at five signals, four of which had same direction of effect. Shared risk variants were associated with quantitative measures of islet function and early growth, and were expression QTLs in relevant tissues. We further identified a shared variant at GLIS3 in islet accessible chromatin with allelic effects on enhancer activity. Our findings identify a shared genetic risk involving effects on islet function as well as insulin resistance, growth and development in the etiology of T1D and T2D, supporting a role for T2D-relevant processes in addition to autoimmunity in T1D risk.

10.
Mol Biol Evol ; 32(5): 1365-71, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25701167

RESUMEN

We present BUSTED, a new approach to identifying gene-wide evidence of episodic positive selection, where the non-synonymous substitution rate is transiently greater than the synonymous rate. BUSTED can be used either on an entire phylogeny (without requiring an a priori hypothesis regarding which branches are under positive selection) or on a pre-specified subset of foreground lineages (if a suitable a priori hypothesis is available). Selection is modeled as varying stochastically over branches and sites, and we propose a computationally inexpensive evidence metric for identifying sites subject to episodic positive selection on any foreground branches. We compare BUSTED with existing models on simulated and empirical data. An implementation is available on www.datamonkey.org/busted, with a widget allowing the interactive specification of foreground branches.


Asunto(s)
Simulación por Computador , Evolución Molecular , Selección Genética/genética , Modelos Genéticos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...