Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EJNMMI Radiopharm Chem ; 9(1): 16, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393497

RESUMEN

BACKGROUND: Fatty acid binding protein 3 (FABP3) is a target with clinical relevance and the peptide ligand ACooP has been identified for FABP3 targeting. ACooP is a linear decapeptide containing a free amino and thiol group, which provides opportunities for conjugation. This work is to develop methods for radiolabeling of ACooP with fluorine-18 (18F) for positron emission tomography (PET) applications, and evaluate the binding of the radiolabeled ACooP in human tumor tissue sections with high FABP3 expression. RESULTS: The prosthetic compound 6-[18F]fluoronicotinic acid 4-nitrophenyl ester was conveniently prepared with an on-resin 18F-fluorination in 29.9% radiochemical yield and 96.6% radiochemical purity. Interestingly, 6-[18F]fluoronicotinic acid 4-nitrophenyl ester conjugated to ACooP exclusively by S-acylation instead of the expected N-acylation, and the chemical identity of the product [18F]FNA-S-ACooP was confirmed. In the in vitro binding experiments, [18F]FNA-S-ACooP exhibited heterogeneous and high focal binding in malignant tissue sections, where we also observed abundant FABP3 positivity by immunofluorescence staining. Blocking study further confirmed the [18F]FNA-S-ACooP binding specificity. CONCLUSIONS: FABP3 targeted ACooP peptide was successfully radiolabeled by S-acylation using 6-[18F]fluoronicotinic acid 4-nitrophenyl ester as the prosthetic compound. The tissue binding and blocking studies together with anti-FABP3 immunostaining confirmed [18F]FNA-S-ACooP binding specificity. Further preclinical studies of [18F]FNA-S-ACooP are warranted.

2.
Int J Cancer ; 154(11): 1987-1998, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38319157

RESUMEN

Approximately 5% of colorectal cancers (CRCs) have a gain-of-function mutation in the GNAS gene, which leads to the activation of cAMP-dependent signaling pathways and associates with poor prognosis. We investigated the effect of an activating GNAS mutation in CRC cell lines on gene expression and cell proliferation in vitro, and tumor growth in vivo. GNAS-mutated (GNASmt) HCT116 cells showed stimulated synthesis of cAMP as compared to parental (Par) cells. The most upregulated gene in the GNASmt cells was cAMP-hydrolyzing phosphodiesterase 4D (PDE4D) as detected by RNA sequencing. To further validate our finding, we analyzed PDE4D expression in a set of human CRC tumors (n = 35) and demonstrated overexpression in GNAS mutant CRC tumors as compared to GNAS wild-type tumors. The GNASmt HCT116 cells proliferated more slowly than the Par cells. PDE4 inhibitor Ro 20-1724 and PDE4D subtype selective inhibitor GEBR-7b further suppressed the proliferation of GNASmt cells without an effect on Par cells. The growth inhibitory effect of these inhibitors was also seen in the intrinsically GNAS-mutated SK-CO-1 CRC cell line having high levels of cAMP synthesis and PDE4D expression. In vivo, GNASmt HCT116 cells formed smaller tumors than the Par cells in nude mice. In conclusion, our findings demonstrate that GNAS mutation results in the growth suppression of CRC cells. Moreover, the GNAS mutation-induced overexpression of PDE4D provides a potential avenue to impede the proliferation of CRC cells through the use of PDE4 inhibitors.


Asunto(s)
Cromograninas , Neoplasias Colorrectales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Subunidades alfa de la Proteína de Unión al GTP Gs , Animales , Humanos , Ratones , Cromograninas/genética , Cromograninas/metabolismo , Neoplasias Colorrectales/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células HCT116 , Ratones Desnudos , Mutación , Inhibidores de Fosfodiesterasa 4/farmacología
3.
Pharmaceutics ; 13(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918106

RESUMEN

Cancer is one of the leading causes of death worldwide. The development of cancer-specific diagnostic agents and anticancer toxins would improve patient survival. The current and standard types of medical care for cancer patients, including surgery, radiotherapy, and chemotherapy, are not able to treat all cancers. A new treatment strategy utilizing tumor targeting peptides to selectively deliver drugs or applicable active agents to solid tumors is becoming a promising approach. In this review, we discuss the different tumor-homing peptides discovered through combinatorial library screening, as well as native active peptides. The different structure-function relationship data that have been used to improve the peptide's activity and conjugation strategies are highlighted.

4.
Cancers (Basel) ; 12(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650473

RESUMEN

We recently identified the glioblastoma homing peptide CooP (CGLSGLGVA) using in vivo phage display screen. The mammary-derived growth inhibitor (MDGI/FABP3) was identified as its interacting partner. Here, we present an alanine scan of A-CooP to investigate the contribution of each amino acid residue to the binding to FABP3 by microscale thermophoresis (MST) and surface plasmon resonance (SPR). We also tested the binding affinity of the A-CooP-K, KA-CooP, and retro-inverso A-CooP analogues to the recombinant FABP3. According to the MST analysis, A-CooP showed micromolar (KD = 2.18 µM) affinity to FABP3. Alanine replacement of most of the amino acids did not affect peptide affinity to FABP3. The A-CooP-K variant showed superior binding affinity, while A-[Ala5]CooP and A-[Ala7]CooP, both replacing a glycine residue with alanine, showed negligible binding to FABP3. These results were corroborated in vitro and in vivo using glioblastoma models. Both A-CooP-K and A-CooP showed excellent binding in vitro and homing in vivo, while A-[Ala5]CooP and control peptides failed to bind the cells or home to the intracranial glioblastoma xenografts. These results provide insight into the FABP3-A-CooP interaction that may be important for future applications of drug conjugate design and development.

5.
Oncotarget ; 7(11): 12254-66, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26930721

RESUMEN

Upregulation of SESTRIN 2 (SESN2) has been reported in response to diverse cellular stresses. In this study we demonstrate SESTRIN 2 induction following endoplasmic reticulum (ER) stress. ER stress-induced increases in SESTRIN 2 expression were dependent on both PERK and IRE1/XBP1 arms of the unfolded protein response (UPR). SESTRIN 2 induction, post ER stress, was responsible for mTORC1 inactivation and contributed to autophagy induction. Conversely, knockdown of SESTRIN 2 prolonged mTORC1 signaling, repressed autophagy and increased ER stress-induced cell death. Unexpectedly, the increase in ER stress-induced cell death was not linked to autophagy inhibition. Analysis of UPR pathways identified prolonged eIF2α, ATF4 and CHOP signaling in SESTRIN 2 knockdown cells following ER stress. SESTRIN 2 regulation enables UPR derived signals to indirectly control mTORC1 activity shutting down protein translation thus preventing further exacerbation of ER stress.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Proteínas Nucleares/biosíntesis , Línea Celular Tumoral , Supervivencia Celular/fisiología , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/metabolismo , Células HCT116 , Humanos , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación hacia Arriba , Proteína 1 de Unión a la X-Box/metabolismo , eIF-2 Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...