Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immune Netw ; 23(2): e18, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37179746

RESUMEN

It has been reported that some exercise could enhance the anti-viral antibody titers after vaccination including influenza and coronavirus disease 2019 vaccines. We developed SAT-008, a novel digital device, consists of physical activities and activities related to the autonomic nervous system. We assessed the feasibility of SAT-008 to boost host immunity after an influenza vaccination by a randomized, open-label, and controlled study on adults administered influenza vaccines in the previous year. Among 32 participants, the SAT-008 showed a significant increase in the anti-influenza antibody titers assessed by hemagglutination-inhibition test against antigen subtype B Yamagata lineage after 4 wk of vaccination and subtype B Victoria lineage after 12 wk (p<0.05). There was no difference in the antibody titers against subtype "A." The SAT-008 also showed significant increase in the plasma cytokine levels of IL-10, IL-1ß, and IL-6 at weeks 4 and 12 after the vaccination (p<0.05). A new approach using the digital device may boost host immunity against virus via vaccine adjuvant-like effects. Trial Registration: ClinicalTrials.gov Identifier: NCT04916145.

2.
Immune Netw ; 22(2): e15, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35573147

RESUMEN

Foreign molecules, including viruses and bacteria-derived toxins, can also induce airway inflammation. However, to the best of our knowledge, the roles of these molecules in the development of airway inflammation have not been fully elucidated. Herein, we investigated the precise role and synergistic effect of virus-mimicking double-stranded RNA (dsRNA) and staphylococcal enterotoxin B (SEB) in macrophages and epithelial cells. To identify cytokine expression profiles, both the THP-1-derived macrophages and BEAS-2B epithelial cells were stimulated with dsRNA or SEB. A total of 21 cytokines were evaluated in the culture supernatants. We observed that stimulation with dsRNA induced cytokine production in both cell types. However, cytokine production was not induced in SEB-stimulated epithelial cells, compared to the macrophages. The synergistic effect of dsRNA and SEB was evaluated observing cytokine level and intracellular phospho-signaling. Fifteen different types were detected in high-dose dsRNA-stimulated epithelial cells, and 12 distinct types were detected in macrophages; those found in macrophages lacked interferon production compared to the epithelial cells. Notably, a synergistic effect of cytokine induction by co-stimulation of dsRNA and SEB was observed mainly in epithelial cells, via activation of most intracellular phosphor-signaling. However, macrophages only showed an accumulative effect. This study showed that the type and severity of cytokine productions from the epithelium or macrophages could be affected by different intensities and a combination of dsRNA and SEB. Further studies with this approach may improve our understanding of the development and exacerbation of airway inflammation and asthma.

3.
Sci Rep ; 10(1): 1637, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005929

RESUMEN

Characterizing upper airway occlusion during natural sleep could be instrumental for studying the dynamics of sleep apnea and designing an individualized treatment plan. In recent years, obstructive sleep apnea (OSA) phenotyping has gained attention to classify OSA patients into relevant therapeutic categories. Electrical impedance tomography (EIT) has been lately suggested as a technique for noninvasive continuous monitoring of the upper airway during natural sleep. In this paper, we developed the automatic data processing and feature extract methods to handle acquired EIT data for several hours. Removing ventilation and blood flow artifacts, EIT images were reconstructed to visualize how the upper airway collapsed and reopened during the respiratory event. From the time series of reconstructed EIT images, we extracted the upper airway closure signal providing quantitative information about how much the upper airway was closed during collapse and reopening. Features of the upper airway dynamics were defined from the extracted upper airway closure signal and statistical analyses of ten OSA patients' data were conducted. The results showed the feasibility of the new method to describe the upper airway dynamics during sleep apnea, which could be a new step towards OSA phenotyping and treatment planning.


Asunto(s)
Sistema Respiratorio/fisiopatología , Apnea Obstructiva del Sueño/fisiopatología , Impedancia Eléctrica , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Polisomnografía/métodos , Sueño/fisiología
4.
Biomed Eng Online ; 18(1): 83, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31345220

RESUMEN

BACKGROUND: Electrical impedance tomography (EIT) has been used for functional lung imaging of regional air distributions during mechanical ventilation in intensive care units (ICU). From numerous clinical and animal studies focusing on specific lung functions, a consensus about how to use the EIT technique has been formed lately. We present an integrated EIT system implementing the functions proposed in the consensus. The integrated EIT system could improve the usefulness when monitoring of mechanical ventilation for lung protection so that it could facilitate the clinical acceptance of this new technique. METHODS: Using a custom-designed 16-channel EIT system with 50 frames/s temporal resolution, the integrated EIT system software was developed to implement five functional images and six EIT measures that can be observed in real-time screen view and analysis screen view mode, respectively. We evaluated the performance of the integrated EIT system with ten mechanically ventilated porcine subjects in normal and disease models. RESULTS: Quantitative and simultaneous imaging of tidal volume (TV), end-expiratory lung volume change ([Formula: see text]EELV), compliance, ventilation delay, and overdistension/collapse images were performed. Clinically useful parameters were successfully extracted including anterior/posterior ventilation ratio (A/P ratio), center of ventilation ([Formula: see text], [Formula: see text]), global inhomogeneity (GI), coefficient of variation (CV), ventilation delay and percentile of overdistension/collapse. The integrated EIT system was demonstrated to suggest an optimal positive end-expiratory pressure (PEEP) for lung protective ventilation in normal and in the disease model of an acute injury. Optimal PEEP for normal and disease model was 2.3 and [Formula: see text], respectively. CONCLUSIONS: The proposed integrated approach for functional lung ventilation imaging could facilitate clinical acceptance of the bedside EIT imaging method in ICU. Future clinical studies of applying the proposed methods to human subjects are needed to show the clinical significance of the method for lung protective mechanical ventilation and mechanical ventilator weaning in ICU.


Asunto(s)
Pulmón/fisiología , Ventilación Pulmonar , Tomografía/métodos , Animales , Impedancia Eléctrica , Programas Informáticos , Porcinos , Volumen de Ventilación Pulmonar
5.
Ann Biomed Eng ; 47(4): 990-999, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30693441

RESUMEN

Noninvasive continuous imaging of the upper airway during natural sleep was conducted for patients with obstructive sleep apnea (OSA) using the electrical impedance tomography (EIT) technique. A safe amount of alternating current (AC) was injected into the lower head through multiple surface electrodes. Since the air is an electrical insulator, upper airway narrowing during OSA altered internal current pathways and changed the induced voltage distribution. Since the measured voltage data from the surface of the lower head were influenced not only by upper airway narrowing but respiratory motions, head motions, and blood flows, we developed a pre-processing algorithm to extract the voltage component originated from upper airway closing and opening. Using an EIT image reconstruction algorithm, time-series of EIT images of the upper airway were produced with a temporal resolution of 50 frames per second. Applying a postprocessing algorithm to the reconstructed EIT images, we could extract quantitative information about changes in the size and shape during upper airway closing and opening. Results of the clinical studies with seven normal subjects and ten OSA patients show the feasibility of the new method for OSA phenotyping and treatment planning.


Asunto(s)
Algoritmos , Impedancia Eléctrica , Imagenología Tridimensional , Faringe , Apnea Obstructiva del Sueño , Sueño , Tráquea , Adulto , Femenino , Humanos , Masculino , Faringe/diagnóstico por imagen , Faringe/fisiopatología , Apnea Obstructiva del Sueño/diagnóstico por imagen , Apnea Obstructiva del Sueño/fisiopatología , Tráquea/diagnóstico por imagen , Tráquea/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...