Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 9(33): 22960-22975, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29796165

RESUMEN

Despite recent advances in treatment, breast cancer remains the second-most common cause of cancer death among American women. A greater understanding of the molecular characteristics of breast tumors could ultimately lead to improved tumor-targeted treatment options, particularly for subsets of breast cancer patients with unmet needs. Using an unbiased genomics approach to uncover membrane-localized tumor-associated antigens (TAAs), we have identified glial cell line derived neurotrophic factor (GDNF) family receptor α 1 (GFRA1) as a breast cancer TAA. Immunohistochemistry (IHC) revealed that GFRA1 displays a limited normal tissue expression profile coupled with overexpression in specific breast cancer subsets. The cell surface localization as determined by fluorescence-activated cell sorting (FACS) and the rapid internalization kinetics of GFRA1 makes it an ideal target for therapeutic exploitation as an antibody-drug conjugate (ADC). Here, we describe the development of a pyrrolobenzodiazepine (PBD)-armed, GFRA1-targeted ADC that demonstrates cytotoxicity in GFRA1-positive cell lines and patient-derived xenograft (PDX) models. The safety profile of the rat cross-reactive GFRA1-PBD was assessed in a rat toxicology study to find transient cellularity reductions in the bone marrow and peripheral blood, consistent with known off-target effects of PBD ADC's. These studies reveal no evidence of on-target toxicity and support further evaluation of GFRA1-PBD in GFRA1-positive tumors.

2.
PLoS One ; 11(6): e0157788, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27322177

RESUMEN

Antibody-mediated immune effector functions play an essential role in the anti-tumor efficacy of many therapeutic mAbs. While much of the effort to improve effector potency has focused on augmenting the interaction between the antibody-Fc and activating Fc-receptors expressed on immune cells, the role of antibody binding interactions with the target antigen remains poorly understood. We show that antibody intrinsic affinity to the target antigen clearly influences the extent and efficiency of Fc-mediated effector mechanisms, and report the pivotal role of antibody binding valence on the ability to regulate effector functions. More particularly, we used an array of affinity modulated variants of three different mAbs, anti-CD4, anti-EGFR and anti-HER2 against a panel of target cell lines expressing disparate levels of the target antigen. We found that at saturating antibody concentrations, IgG variants with moderate intrinsic affinities, similar to those generated by the natural humoral immune response, promoted superior effector functions compared to higher affinity antibodies. We hypothesize that at saturating concentrations, effector function correlates most directly with the amount of Fc bound to the cell surface. Thus, high affinity antibodies exhibiting slow off-rates are more likely to interact bivalently with the target cell, occupying two antigen sites with a single Fc. In contrast, antibodies with faster off-rates are likely to dissociate each binding arm more rapidly, resulting in a higher likelihood of monovalent binding. Monovalent binding may in turn increase target cell opsonization and lead to improved recruitment of effector cells. This unpredicted relationship between target affinity and effector function potency suggests a careful examination of antibody design and engineering for the development of next-generation immunotherapeutics.


Asunto(s)
Afinidad de Anticuerpos/inmunología , Antígenos/inmunología , Inmunoglobulina G/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Antígenos CD4/inmunología , Línea Celular Tumoral , Endocitosis , Receptores ErbB/metabolismo , Genes Reporteros , Humanos , Isoformas de Proteínas , Receptor ErbB-2/metabolismo , Receptores de IgG/metabolismo
3.
Biomacromolecules ; 17(5): 1818-33, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27007881

RESUMEN

Targeted nanomedicines are a promising technology for treatment of disease; however, preparation and characterization of well-defined protein-nanoparticle systems remain challenging. Here, we describe a platform technology to prepare antibody binding fragment (Fab)-bearing nanoparticles and an accompanying real-time cell-based assay to determine their cellular uptake compared to monoclonal antibodies (mAbs) and Fabs. The nanoparticle platform was composed of core-cross-linked polyion complex (PIC) micelles prepared from azide-functionalized PEG-b-poly(amino acids), that is, azido-PEG-b-poly(l-lysine) [N3-PEG-b-PLL] and azido-PEG-b-poly(aspartic acid) [N3-PEG-b-PAsp]. These PIC micelles were 30 nm in size and contained approximately 10 polymers per construct. Fabs were derived from an antibody binding the EphA2 receptor expressed on cancer cells and further engineered to contain a reactive cysteine for site-specific attachment and a cleavable His tag for purification from cell culture expression systems. Azide-functionalized micelles and thiol-containing Fab were linked using a heterobifunctional cross-linker (FPM-PEG4-DBCO) that contained a fluorophenyl-maleimide for stable conjugation to Fabs thiols and a strained alkyne (DBCO) group for coupling to micelle azide groups. Analysis of Fab-PIC micelle conjugates by fluorescence correlation spectroscopy, size exclusion chromatography, and UV-vis absorbance determined that each nanoparticle contained 2-3 Fabs. Evaluation of cellular uptake in receptor positive cancer cells by real-time fluorescence microscopy revealed that targeted Fab-PIC micelles achieved higher cell uptake than mAbs and Fabs, demonstrating the utility of this approach to identify targeted nanoparticle constructs with unique cellular internalization properties.


Asunto(s)
Anticuerpos Monoclonales/química , Reactivos de Enlaces Cruzados/química , Fragmentos Fab de Inmunoglobulinas/química , Nanopartículas/química , Polímeros/química , Neoplasias de la Próstata/metabolismo , Receptor EphA2/metabolismo , Anticuerpos Monoclonales/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/metabolismo , Masculino , Micelas , Polímeros/metabolismo , Células Tumorales Cultivadas
4.
Nucl Med Biol ; 39(1): 23-34, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21958852

RESUMEN

INTRODUCTION: Malignant glioma remains a significant therapeutic challenge, and immunotherapeutics might be a beneficial approach for these patients. A monoclonal antibody (MAb) specific for multiple molecular targets could expand the treatable patient population and the fraction of tumor cells targeted, with potentially increased efficacy. This motivated the generation of MAb D2C7, which recognizes both wild-type epidermal growth factor receptor (EGFRwt) and a tumor-specific mutant, EGFRvIII. METHODS: D2C7 binding affinity was determined by surface plasmon resonance and its specificity characterized through comparison to EGFRwt-specific EGFR.1 and EGFRvIII-specific L8A4 MAbs by flow cytometry and immunohistochemical analysis. The three MAbs were labeled with (125)I or (131)I using Iodogen, and paired-label internalization assays and biodistribution experiments in athymic mice with human tumor xenografts were performed. RESULTS: The affinity of D2C7 for EGFRwt and EGFRvIII was 5.2×10(9) M(-1) and 3.6×10(9) M(-1), and cell-surface reactivity with both receptors was documented by flow cytometry. Immunohistochemical analyses revealed D2C7 reactivity with malignant glioma tissue from 90 of 101 patients. Internalization assays performed on EGFRwt-expressing WTT cells and EGFRvIII-expressing NR6M cells indicated a threefold lower degradation of (125)I-labeled D2C7 compared with (131)I-labeled EGFR.1. Uptake of (125)I-labeled D2C7 in NR6M xenografts (52.45±13.97 %ID g(-1) on Day 3) was more than twice that of (131)I-labeled L8A4; a threefold to fivefold tumor delivery advantage was seen when compared to (131)I-labeled EGFR.1 in mice with WTT xenografts. CONCLUSIONS: These results suggest that D2C7 warrants further evaluation for the development of MAb-based therapeutics against cancers expressing EGFRwt and EGFRvIII.


Asunto(s)
Anticuerpos Monoclonales/farmacocinética , Receptores ErbB/metabolismo , Glioma/metabolismo , Radioisótopos de Yodo/farmacocinética , Animales , Anticuerpos Monoclonales/uso terapéutico , Línea Celular Tumoral , Femenino , Citometría de Flujo , Glioma/radioterapia , Humanos , Radioisótopos de Yodo/uso terapéutico , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Distribución Tisular
5.
PLoS One ; 6(12): e27756, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174746

RESUMEN

BACKGROUND: Most Yersinia pestis strains are known to express a capsule-like antigen, fraction 1 (F1)(.) F1 is encoded by the caf1 gene located on the large 100-kb pFra plasmid, which is found in Y. pestis but not in closely related species such as Yersinia enterocolytica and Yersinia pseudotuberculosis. In order to find antibodies specifically binding to Y. pestis we screened a large single chain Fv antibody fragment (scFv) phage display library using purified F1 antigen as a selection target. Different forms of the selected antibodies were used to establish assays for recombinant F1 antigen and Y. pestis detection. METHODS: Phage antibody panning was performed against F1 in an automated fashion using the Kingfisher magnetic bead system. Selected scFvs were screened for F1-binding specificity by one-step alkaline phosphatase enzyme linked immunosorbant assay (ELISA), and assayed for binding to recombinant antigen and/or Y. pestis by flow cytometry and whole-cell ELISA. RESULTS: Seven of the eight selected scFvs were shown to specifically bind both recombinant F1 and a panel of F1-positive Yersinia cells. The majority of the soluble scFvs were found to be difficult to purify, unstable and prone to cross-reactivity with F1-negative Yersinia strains, whereas phage displayed scFvs were found to be easy to purify/label and remarkably stable. Furthermore direct fluorescent labeling of phage displaying scFv allowed for an easy one-step flow cytometry assay. Slight cross-reactivity was observed when fixed cells were used in ELISA. CONCLUSIONS: Our high throughput methods of selection and screening allowed for time and cost effective discovery of seven scFvs specifically binding Y. pestis F1 antigen. We describe implementation of different methods for phage-based immunoassay. Based on the success of these methods and the proven stability of phage, we indicate that the use of phage-displayed, rather than phage-free proteins, might generally overcome the shortcomings of scFv antibodies.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Bacteriófagos , Biblioteca de Péptidos , Anticuerpos de Cadena Única/inmunología , Yersinia pestis/inmunología , Yersinia pestis/aislamiento & purificación , Secuencia de Aminoácidos , Anticuerpos Antibacterianos/análisis , Anticuerpos Antibacterianos/genética , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Bacteriófagos/genética , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Fluorescencia , Indicadores y Reactivos , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Alineación de Secuencia , Anticuerpos de Cadena Única/análisis , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/genética
6.
Biochem Biophys Res Commun ; 391(1): 750-5, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19944071

RESUMEN

The lacto-series gangliosides 3'-isoLM1 and 3',6'-isoLD1 have been identified as tumor-associated antigens whose formation is initiated by the Lc3-synthase. Until now, high-affinity IgG monoclonal antibodies (mAbs) against 3'-isoLM1 and 3',6'-isoLD1, which are highly expressed in gliomas, have not been developed, although mAbs against lacto-series gangliosides are powerful tools for functional studies. We previously produced the Lc3-synthase gene beta3Gn-T5 knockout mice. In this study, we immunized beta3Gn-T5 knockout mice with 3'-isoLM1/3',6'-isoLD1 and produced the anti-3'-isoLM1/3',6'-isoLD1 mAb GMab-1, of the IgG(3) subclass, which should be useful for functional analysis of lacto-series gangliosides and for antibody-based therapy of gliomas.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Biomarcadores de Tumor/inmunología , Gangliósidos/inmunología , Glioma/inmunología , Inmunoglobulina G/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Inmunoglobulina G/biosíntesis , Ratones , Ratones Noqueados , N-Acetilglucosaminiltransferasas/genética
7.
Methods Mol Biol ; 525: 241-60, xiii, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19252858

RESUMEN

The development of high-throughput screening (HTS) technologies has become essential for initial characterization of recombinant antibodies and alternative affinity reagents, selected from large combinatorial libraries. Such binding ligands are routinely selected against a single antigen and screened for desired binding specificities. Recent progress with genome sequencing projects has led to widespread efforts to study corresponding proteomes; requiring selection of ligands against large numbers of gene products in a highly parallel manner. The capabilities of many routine HTS methods such as enzyme-linked immunosorbent assay (ELISA), or array-based methods, are limited to analysis of numerous different antibody clones against a single target or, individual antibody clones against many different targets. We have developed a multiplexed flow cytometry screening method that allows analysis of individual binding ligands against numerous targets in the same analytical sample. The method produces a complex analytical profile for each antibody clone in the primary screen, by allowing simultaneous determination of relative expression levels, identification of non-specific binding, and discrimination of fine specificities. The quality and quantity of data, combined with significant reductions in analysis time and antigen consumption, provide notable advantages over other standard screening methods, such as ELISA. By combining HT screening capabilities with multiplex technology, we have redefined the parameters for the initial identification of affinity reagents recovered from combinatorial libraries and removed a significant bottleneck in the generation of affinity reagents on a proteomic scale.


Asunto(s)
Anticuerpos/análisis , Citometría de Flujo/métodos , Secuencia de Aminoácidos , Antígenos/química , Avidina/metabolismo , Secuencia de Bases , Clonación Molecular , Conjugación Genética , Vectores Genéticos/genética , Humanos , Región Variable de Inmunoglobulina/genética , Ligandos , Microesferas , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/metabolismo , Coloración y Etiquetado
8.
J Proteome Res ; 6(3): 1072-82, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17330944

RESUMEN

We have developed a screening method that has the potential to streamline the high-throughput analysis of affinity reagents for proteomic projects. By using multiplexed flow cytometry, we can simultaneously determine the relative expression levels, the identification of nonspecific binding, and the discrimination of fine specificities to generate a complete functional profile for each clone. The quality and quantity of data, combined with significant reductions in analysis time and antigen consumption, provide notable advantages over standard ELISA methods and yield much information in the primary screen which is usually only obtained in later screens. By combining high-throughput screening capabilities with multiplex technology, we have redefined the parameters for the initial identification of affinity reagents recovered from combinatorial libraries and removed a significant bottleneck in the generation of affinity reagents on a proteomic scale.


Asunto(s)
Anticuerpos/análisis , Citometría de Flujo/métodos , Fragmentos de Inmunoglobulinas/análisis , Marcadores de Afinidad , Especificidad de Anticuerpos , Técnicas Químicas Combinatorias , Citometría de Flujo/normas , Métodos , Proteómica/métodos
9.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 8): 1502-5, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15272191

RESUMEN

C3 exoenzyme from Clostridium botulinum (C3bot1) ADP-ribosylates and thereby inactivates Rho A, B and C GTPases in mammalian cells. The structure of a tetragonal crystal form has been determined by molecular replacement and refined to 1.89 A resolution. It is very similar to the apo structures determined previously from two different monoclinic crystal forms. An objective reassessment of available apo and nucleotide-bound C3bot1 structures indicates that, contrary to a previous report, the protein possesses a rigid core formed largely of beta-strands and that the general flexure that accompanies NAD binding is concentrated in two peripheral lobes. Tetragonal crystals disintegrate in the presence of NAD, most likely because of disruption of essential crystal contacts.


Asunto(s)
ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/metabolismo , Toxinas Botulínicas/química , Toxinas Botulínicas/metabolismo , Clostridium botulinum/enzimología , NAD/metabolismo , Cristalización , Cristalografía por Rayos X , Ligandos , Modelos Moleculares , Docilidad , Conformación Proteica
10.
J Biol Chem ; 278(46): 45924-30, 2003 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-12933793

RESUMEN

The C3stau2 exoenzyme from Staphylococcus aureus is a C3-like ADP-ribosyltransferase that ADP-ribosylates not only RhoA-C but also RhoE/Rnd3. In this study we have crystallized and determined the structure of C3stau2 in both its native form and in complex with NAD at 1.68- and 2.02-A resolutions, respectively. The topology of C3stau2 is similar to that of C3bot1 from Clostridium botulinum (with which it shares 35% amino acid sequence identity) with the addition of two extra helices after strand beta1. The native structure also features a novel orientation of the catalytic ARTT loop, which approximates the conformation seen for the "NAD bound" form of C3bot1. C3stau2 orients NAD similarly to C3bot1, and on binding NAD, C3stau2 undergoes a clasping motion and a rearrangement of the phosphate-nicotinamide binding loop, enclosing the NAD in the binding site. Comparison of these structures with those of C3bot1 and related toxins reveals a degree of divergence in the interactions with the adenine moiety among the ADP-ribosylating toxins that contrasts with the more conserved interactions with the nicotinamide. Comparison with C3bot1 gives some insight into the different protein substrate specificities of these enzymes.


Asunto(s)
ADP Ribosa Transferasas/química , Toxinas Botulínicas/química , NAD/química , Staphylococcus aureus/química , ADP Ribosa Transferasas/genética , Secuencia de Aminoácidos , Arginina/química , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...