Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Neurotherapeutics ; : e00432, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39164165

RESUMEN

Multiple sclerosis (MS) is a debilitating affliction of the central nervous system (CNS) that involves demyelination of neuronal axons and neurodegeneration resulting in disability that becomes more pronounced in progressive forms of the disease. The involvement of neurodegeneration in MS underscores the need for effective neuroprotective approaches necessitating identification of new therapeutic targets. Herein, we applied an integrated elemental analysis workflow to human MS-affected spinal cord tissue utilising multiple inductively coupled plasma-mass spectrometry methodologies. These analyses revealed shifts in atomic copper as a notable aspect of disease. Complementary gene expression and biochemical analyses demonstrated that changes in copper levels coincided with altered expression of copper handling genes and downstream functionality of cuproenzymes. Copper-related problems observed in the human MS spinal cord were largely reproduced in the experimental autoimmune encephalomyelitis (EAE) mouse model during the acute phase of disease characterised by axonal demyelination, lesion formation, and motor neuron loss. Treatment of EAE mice with the CNS-permeant copper modulating compound CuII(atsm) resulted in recovery of cuproenzyme function, improved myelination and lesion volume, and neuroprotection. These findings support targeting copper perturbations as a therapeutic strategy for MS with CuII(atsm) showing initial promise.

2.
J Neurochem ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135362

RESUMEN

The strongest genetic risk factor for late-onset Alzheimer's disease (AD) is allelic variation of the APOE gene, with the following risk structure: ε4 > ε3 > ε2. The biochemical basis for this risk profile is unclear. Here, we reveal a new role for the APOE gene product, apolipoprotein E (ApoE) in regulating cellular copper homeostasis, which is perturbed in the AD brain. Exposure of ApoE target replacement (TR) astrocytes (immortalised astrocytes from APOE knock-in mice) to elevated copper concentrations resulted in exacerbated copper accumulation in ApoE4- compared to ApoE2- and ApoE3-TR astrocytes. This effect was also observed in SH-SY5Y neuroblastoma cells treated with conditioned medium from ApoE4-TR astrocytes. Increased intracellular copper levels in the presence of ApoE4 may be explained by reduced levels and delayed trafficking of the copper transport protein, copper-transporting ATPase 1 (ATP7A/Atp7a), potentially leading to impaired cellular copper export. This new role for ApoE in copper regulation lends further biochemical insight into how APOE genotype confers risk for AD and reveals a potential contribution of ApoE4 to the copper dysregulation that is a characteristic pathological feature of the AD brain.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39002022

RESUMEN

PURPOSE: Neratinib, a small-molecule tyrosine kinase inhibitor (TKI) that irreversibly binds to human epidermal growth factor receptors 1, 2 and 4 (HER1/2/4), is an approved extended adjuvant therapy for patients with HER2-amplified or -overexpressed (HER2-positive) breast cancers. Patients receiving neratinib may experience mild-to-severe symptoms of gut toxicity including abdominal pain and diarrhoea. Despite being a highly prevalent complication in gut health, the biological processes underlying neratinib-induced gut injury, especially in the colon, remains unclear. METHODS: Real-time quantitative polymerase chain reaction (RT-qPCR) and histology were integrated to study the effect of, and type of cell death induced by neratinib on colonic tissues collected from female Albino Wistar rats dosed with neratinib (50 mg/kg) daily for 28 days. Additionally, previously published bulk RNA-sequencing and CRISPR-screening datasets on human glioblastoma SF268 cell line and glioblastoma T895 xenograft, and mouse TBCP1 breast cancer cell line were leveraged to elucidate potential mechanisms of neratinib-induced cell death. RESULTS: The severity of colonic epithelial injury, especially degeneration of surface lining colonocytes and infiltration of immune cells, was more pronounced in the distal colon than the proximal colon. Sequencing showed that apoptotic gene signature was enriched in neratinib-treated SF268 cells while ferroptotic gene signature was enriched in neratinib-treated TBCP1 cells and T895 xenograft. However, we found that ferroptosis, but less likely apoptosis, was a potential histopathological feature underlying colonic injury in rats treated with neratinib. CONCLUSION: Ferroptosis is a potential feature of neratinib-induced colonic injury and that targeting molecular machinery governing neratinib-induced ferroptosis may represent an attractive therapeutic approach to ameliorate symptoms of gut toxicity.

4.
Redox Biol ; 75: 103211, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38908072

RESUMEN

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.


Asunto(s)
Ferroptosis , Humanos , Animales , Hierro/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Peroxidación de Lípido , Oxidación-Reducción , Susceptibilidad a Enfermedades
5.
Autophagy ; 20(6): 1213-1246, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38442890

RESUMEN

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.


Asunto(s)
Autofagia , Ferroptosis , Ferroptosis/fisiología , Humanos , Autofagia/fisiología , Animales , Consenso
6.
Biochem Pharmacol ; 222: 116092, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38408679

RESUMEN

Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) is an antimicrobial agent whose actions as a zinc or copper ionophore and an iron chelator revived the interest in similar compounds for the treatment of fungal and bacterial infections, neurodegeneration and cancer. Recently, we reported zinc ionophores, including clioquinol, cause vasorelaxation in isolated arteries through mechanisms that involve sensory nerves, endothelium and vascular smooth muscle. Here, we report that clioquinol also uniquely acts as a competitive alpha-1 (α1) adrenoceptor antagonist. We employed ex vivo functional vascular contraction and pharmacological techniques in rat isolated mesenteric arteries, receptor binding assays using stabilized solubilized α1 receptor variants, or wild-type human α1-adrenoceptors transfected in COS-7 cells (African green monkey kidney fibroblast-like cells), and molecular dynamics homology modelling based on the recently published α1A adrenoceptor cryo-EM and α1B crystal structures. At higher concentrations, all ionophores including clioquinol cause a non-competitive antagonism of agonist-mediated contraction due to intracellular zinc delivery, as reported previously. However, at lower concentration ranges, clioquinol has an additional mechanism of competitively inhibiting α1-adrenoceptors that contributes to decreasing vascular contractility. Molecular dynamic simulation showed that clioquinol binds stably to the orthosteric binding site (Asp106) of the receptor, confirming the structural basis for competitive α1-adrenoceptor antagonism by clioquinol.


Asunto(s)
Clioquinol , Ratas , Humanos , Animales , Chlorocebus aethiops , Clioquinol/farmacología , Oxiquinolina , Receptores Adrenérgicos alfa 1/metabolismo , Ionóforos , Zinc
7.
Mol Neurodegener ; 19(1): 14, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317225

RESUMEN

BACKGROUND: Ferroptosis is a form of regulated cell death characterised by lipid peroxidation as the terminal endpoint and a requirement for iron. Although it protects against cancer and infection, ferroptosis is also implicated in causing neuronal death in degenerative diseases of the central nervous system (CNS). The precise role for ferroptosis in causing neuronal death is yet to be fully resolved. METHODS: To elucidate the role of ferroptosis in neuronal death we utilised co-culture and conditioned medium transfer experiments involving microglia, astrocytes and neurones. We ratified clinical significance of our cell culture findings via assessment of human CNS tissue from cases of the fatal, paralysing neurodegenerative condition of amyotrophic lateral sclerosis (ALS). We utilised the SOD1G37R mouse model of ALS and a CNS-permeant ferroptosis inhibitor to verify pharmacological significance in vivo. RESULTS: We found that sublethal ferroptotic stress selectively affecting microglia triggers an inflammatory cascade that results in non-cell autonomous neuronal death. Central to this cascade is the conversion of astrocytes to a neurotoxic state. We show that spinal cord tissue from human cases of ALS exhibits a signature of ferroptosis that encompasses atomic, molecular and biochemical features. Further, we show the molecular correlation between ferroptosis and neurotoxic astrocytes evident in human ALS-affected spinal cord is recapitulated in the SOD1G37R mouse model where treatment with a CNS-permeant ferroptosis inhibitor, CuII(atsm), ameliorated these markers and was neuroprotective. CONCLUSIONS: By showing that microglia responding to sublethal ferroptotic stress culminates in non-cell autonomous neuronal death, our results implicate microglial ferroptotic stress as a rectifiable cause of neuronal death in neurodegenerative disease. As ferroptosis is currently primarily regarded as an intrinsic cell death phenomenon, these results introduce an entirely new pathophysiological role for ferroptosis in disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Animales , Humanos , Microglía/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Muerte Celular , Modelos Animales de Enfermedad
8.
Neuroimage ; 289: 120547, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373677

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Neuroimagen , Imagen por Resonancia Magnética/métodos , Biomarcadores , Hierro , Progresión de la Enfermedad , Mapeo Encefálico/métodos
9.
J Neuroimaging ; 34(2): 224-231, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38174904

RESUMEN

BACKGROUND AND PURPOSE: Magnetic resonance spectroscopy (MRS) measures neurochemicals in vivo. Glutathione (GSH) is a neuroprotective chemical shown to vary significantly in patients with Alzheimer's disease (AD). This work investigates the reproducibility of GSH measures in the mesial temporal lobe (MTL) to identify its potential clinical utility. METHODS: MRS data were acquired from eight healthy volunteers (31.1 ± 5.2 years; 4 male/female) using Mescher-Garwood-Point Resolved Spectroscopy (MEGA-PRESS) from the MTL in the left hemisphere across two scan sessions in the same visit. Total N-acetylaspartate (tNAA), choline (tCho), creatine (tCr), and GSH were quantified. Reproducibility of quantifications of these neurochemicals were tested using coefficient of variance (CV) between scan sessions. Reproducibility of voxel placement on the left MTL was calculated by measuring the tissue overlap and percent of hippocampus within that voxel. CV measured across different scan sessions in each individual, with a CV<15% was accepted as "good" reproducibility. Paired t-tests were carried out to establish the significant differences between the two scans across each individual with p<.05 as significant. RESULTS: TNAA (%CV = 7.2; p = .5), tCr (%CV = 7.8; p = .6) and tCho (%CV = 9.3; p = .4), and GSH (%CV = 22; p = .1). The dice coefficient that reflects the level of overlap of hippocampal tissue in the voxel was shown to be 0.8 ± 0.1. Voxel tissue composition were: Scan 1 (cerebrospinal fluid [CSF]: 5 ± 1%, white matter [WM]: 52 ± 3%, gray matter [GM]: 43 ± 3%); Scan 2 (CSF: 5 ± 1%, WM: 52 ± 4%, GM: 44 ± 4%). CONCLUSION: The data suggest measures of abundant metabolites in the MTL using the MEGA-PRESS sequence has a high reproducibility. Reproducibility of GSH in this area was poorer requiring care when interpreting measures of GSH in the MTL for clinical translational purposes.


Asunto(s)
Glutatión , Lóbulo Temporal , Humanos , Masculino , Femenino , Reproducibilidad de los Resultados , Espectroscopía de Resonancia Magnética/métodos , Lóbulo Temporal/diagnóstico por imagen , Glutatión/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
10.
Biomacromolecules ; 25(2): 1068-1083, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38178625

RESUMEN

A great deal of nanocarriers have been applied to induce ferroptosis in cancer research, yet there are limited examples of nanocarrier formulations to rescue ferroptosis, which can be applied to neurodegeneration, inflammation, liver damage, kidney disease, and more. Here, we present the synthesis, characterization, and in vitro evaluation of pH-responsive, core-cross-linked micelle (CCM) ferrostatin-1 (Fer-1) conjugates with amine, valproic acid, and biotin surface chemistries. Fer-1 release from stable and defined CCM Fer-1 conjugates was quantified, highlighting the sustained release for 24 h. CCM Fer-1 conjugates demonstrated excellent ferroptosis rescue by their antilipid peroxidation activity in a diverse set of cell lines in vitro. Additionally, CCMs showed tunable cell association in SH-SY5Y and translocation across an in vitro blood-brain barrier (BBB) model, highlighting potential brain disease applications. Overall, here, we present a polymeric Fer-1 delivery system to enhance Fer-1 action, which could help in improving Fer-1 action in the treatment of ferroptosis-related diseases.


Asunto(s)
Micelas , Neuroblastoma , Humanos , Oxazoles , Línea Celular , Antígenos
11.
Crit Rev Microbiol ; 50(2): 127-137, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36597758

RESUMEN

The cause of Alzheimer's disease (AD), and the pathophysiological mechanisms involved, remain major unanswered questions in medical science. Oral bacteria, especially those species associated with chronic periodontitis and particularly Porphyromonas gingivalis, are being linked causally to AD pathophysiology in a subpopulation of susceptible individuals. P. gingivalis produces large amounts of proteolytic enzymes, haem and iron capture proteins, adhesins and internalins that are secreted and attached to the cell surface and concentrated onto outer membrane vesicles (OMVs). These enzymes and adhesive proteins have been shown to cause host tissue damage and stimulate inflammatory responses. The ecological and pathophysiological roles of P. gingivalis OMVs, their ability to disperse widely throughout the host and deliver functional proteins lead to the proposal that they may be the link between a P. gingivalis focal infection in the subgingivae during periodontitis and neurodegeneration in AD. P. gingivalis OMVs can cross the blood brain barrier and may accelerate AD-specific neuropathology by increasing neuroinflammation, plaque/tangle formation and dysregulation of iron homeostasis, thereby inducing ferroptosis leading to neuronal death and neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Periodontitis , Humanos , Porphyromonas gingivalis/genética , Adhesinas Bacterianas/metabolismo , Periodontitis/microbiología , Hierro
12.
Sci Bull (Beijing) ; 68(21): 2507-2509, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37758617
13.
Mol Psychiatry ; 28(9): 3982-3993, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37735502

RESUMEN

Tau protein is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau's involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet ß-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in ß-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Animales , Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Secreción de Insulina , Proteínas tau/metabolismo , Páncreas/metabolismo , Páncreas/patología , Glucosa/metabolismo , Enfermedad de Alzheimer/metabolismo
14.
Acta Physiol (Oxf) ; 239(1): e14025, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37548350

RESUMEN

AIM: Renal medullary hypoperfusion and hypoxia precede acute kidney injury (AKI) in ovine sepsis. Oxidative/nitrosative stress, inflammation, and impaired nitric oxide generation may contribute to such pathophysiology. We tested whether the antioxidant and anti-inflammatory drug, tempol, may modify these responses. METHODS: Following unilateral nephrectomy, we inserted renal arterial catheters and laser-Doppler/oxygen-sensing probes in the renal cortex and medulla. Noanesthetized sheep were administered intravenous (IV) Escherichia coli and, at sepsis onset, IV tempol (IVT; 30 mg kg-1 h-1 ), renal arterial tempol (RAT; 3 mg kg-1 h-1 ), or vehicle. RESULTS: Septic sheep receiving vehicle developed renal medullary hypoperfusion (76 ± 16% decrease in perfusion), hypoxia (70 ± 13% decrease in oxygenation), and AKI (87 ± 8% decrease in creatinine clearance) with similar changes during IVT. However, RAT preserved medullary perfusion (1072 ± 307 to 1005 ± 271 units), oxygenation (46 ± 8 to 43 ± 6 mmHg), and creatinine clearance (61 ± 10 to 66 ± 20 mL min-1 ). Plasma, renal medullary, and cortical tissue malonaldehyde and medullary 3-nitrotyrosine decreased significantly with sepsis but were unaffected by IVT or RAT. Consistent with decreased oxidative/nitrosative stress markers, cortical and medullary nuclear factor-erythroid-related factor-2 increased significantly and were unaffected by IVT or RAT. However, RAT prevented sepsis-induced overexpression of cortical tissue tumor necrosis factor alpha (TNF-α; 51 ± 16% decrease; p = 0.003) and medullary Thr-495 phosphorylation of endothelial nitric oxide synthase (eNOS; 63 ± 18% decrease; p = 0.015). CONCLUSIONS: In ovine Gram-negative sepsis, renal arterial infusion of tempol prevented renal medullary hypoperfusion and hypoxia and AKI and decreased TNF-α expression and uncoupling of eNOS. However, it did not affect markers of oxidative/nitrosative stress, which were significantly decreased by Gram-negative sepsis.


Asunto(s)
Lesión Renal Aguda , Sepsis , Animales , Ovinos , Factor de Necrosis Tumoral alfa , Creatinina , Circulación Renal/fisiología , Riñón/metabolismo , Lesión Renal Aguda/metabolismo , Hipoxia/metabolismo , Sepsis/metabolismo , Escherichia coli
15.
Neurobiol Aging ; 129: 209-218, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37399739

RESUMEN

This study aimed to determine the relationship between the apolipoprotein E (APOE) ε4 allele and cerebrospinal fluid (CSF) and neuroimaging biomarkers of Alzheimer's disease, and cognition in cognitively unimpaired (CU) middle-aged adults (n = 82; Mage = 58.2), and in Aß- CU older adults (n = 71; Mage = 71.8). Aß- CU middle-aged ε4 carriers showed lower CSF Aß42 levels, higher levels of CSF total tau (t-tau) and neurofilament light (NfL), and poorer cognitive performance compared to noncarriers (Cohen's d: 0.30-0.56). In Aß- CU older adults, ε4 carriers also had lower CSF Aß42 levels and higher levels of CSF t-tau and p-tau181, compared to noncarriers (Cohen's d: 0.65-0.74). In both Aß- middle-aged and older adults, hippocampal and total brain volume were equivalent between ε4 carriers and noncarriers. In Aß- CU middle-aged adults, APOE ε4 is associated with decreased levels of Aß, increased tau and NfL, and poorer cognition. Similar relationships were observed in Aß- CU older adults. These results have implications for understanding clinicopathological relationships between APOE ε4 and the emergence of cognitive and biomarker abnormalities in Aß- adults.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Humanos , Persona de Mediana Edad , Anciano , Apolipoproteína E4/genética , Apolipoproteína E4/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Proteínas tau/líquido cefalorraquídeo , Heterocigoto , Biomarcadores/líquido cefalorraquídeo
16.
Brain Commun ; 5(3): fcad175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37389302

RESUMEN

The clinical benefit associated with anti-amyloid immunotherapies, a new class of drugs for the treatment of Alzheimer's disease, is predicated on their ability to modify disease course by lowering brain amyloid levels. At the time of writing, two amyloid-lowering antibodies, aducanumab and lecanemab, have obtained United States Food and Drug Administration accelerated approval, with further agents of this class in the Alzheimer's disease treatment pipeline. Based on limited published clinical trial data to date, regulators, payors and physicians will need to assess their efficacy, clinical effectiveness and safety, as well as cost and accessibility. We propose that attention to three important questions related to treatment efficacy, clinical effectiveness and safety should guide evidence-based consideration of this important class of drugs. These are: (1) Were trial statistical analyses appropriate and did they convincingly support claims of efficacy? (2) Do reported treatment effects outweigh safety concerns and are they generalizable to a representative clinical population of people with Alzheimer's disease? and (3) Do the data convincingly demonstrate disease course modification, suggesting that increasing clinical benefits beyond the duration of the trials are likely? We suggest specific approaches to interpreting trial results for these drugs and highlight important areas of uncertainty where additional data and a cautious interpretation of existing results is warranted. Safe, effective and accessible treatments for Alzheimer's disease are eagerly awaited by millions of patients and their caregivers worldwide. While amyloid-targeting immunotherapies may be promising disease-modifying Alzheimer's disease treatments, rigorous and unbiased assessment of clinical trial data is critical to regulatory decision-making and subsequently determining their provision and utility in routine clinical practice. Our recommendations provide a framework for evidence-based appraisal of these drugs by regulators, payors, physicians and patients.

18.
Biomed Pharmacother ; 164: 114930, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37236031

RESUMEN

Vitamin A (retinol) is a lipid-soluble vitamin that acts as a precursor for several bioactive compounds, such as retinaldehyde (retinal) and isomers of retinoic acid. Retinol and all-trans-retinoic acid (atRA) penetrate the blood-brain barrier and are reported to be neuroprotective in several animal models. We characterised the impact of retinol and its metabolites, all-trans-retinal (atRAL) and atRA, on ferroptosis-a programmed cell death caused by iron-dependent phospholipid peroxidation. Ferroptosis was induced by erastin, buthionine sulfoximine or RSL3 in neuronal and non-neuronal cell lines. We found that retinol, atRAL and atRA inhibited ferroptosis with a potency superior to α-tocopherol, the canonical anti-ferroptotic vitamin. In contrast, we found that antagonism of endogenous retinol with anhydroretinol sensitises ferroptosis induced in neuronal and non-neuronal cell lines. Retinol and its metabolites atRAL and atRA directly interdict lipid radicals in ferroptosis since these compounds displayed radical trapping properties in a cell-free assay. Vitamin A, therefore, complements other anti-ferroptotic vitamins, E and K; metabolites of vitamin A, or agents that alter their levels, may be potential therapeutics for diseases where ferroptosis is implicated.


Asunto(s)
Ferroptosis , Vitamina A , Animales , Vitamina A/farmacología , Peroxidación de Lípido/fisiología , Tretinoina/farmacología , Vitaminas , Retinaldehído , Lípidos
19.
Antioxid Redox Signal ; 39(1-3): 141-161, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37212212

RESUMEN

Significance: The lack of disease-modifying treatments for Alzheimer's disease (AD) that substantially alter the course of the disease highlights the need for new biological models of disease progression and neurodegeneration. Oxidation of macromolecules within the brain, including lipids, proteins, and DNA, is believed to contribute to AD pathophysiology, concomitant with dysregulation of redox-active metals, such as iron. Creating a unified model of pathogenesis and progression underpinned by iron dysregulation and redox dysregulation in AD could lead to new therapeutic targets with disease-modifying potential. Recent Advances: Ferroptosis, which was named in 2012, is a necrotic form of regulated cell death that depends on both iron and lipid peroxidation. While it is distinct from other types of regulated cell death, ferroptosis is regarded as being mechanistically synonymous with oxytosis. The ferroptosis paradigm has great explanatory potential in describing how neurons degenerate and die in AD. At the molecular level, ferroptosis is executed by the lethal accumulation of phospholipid hydroperoxides generated by the iron-dependent peroxidation of polyunsaturated fatty acids, while the major defensive protein against ferroptosis is the selenoenzyme, glutathione peroxidase 4 (GPX4). An expanding network of protective proteins and pathways have also been identified to complement GPX4 in the protection of cells against ferroptosis, with a central role emerging for nuclear factor erythroid 2-related factor 2 (NRF2). Critical Issues: In this review, we provide a critical overview of the utility of ferroptosis and NRF2 dysfunction in understanding the iron- and lipid peroxide-associated neurodegeneration of AD. Future Directions: Finally, we discuss how the ferroptosis paradigm in AD is providing a new spectrum of therapeutic targets. Antioxid. Redox Signal. 39, 141-161.


Asunto(s)
Enfermedad de Alzheimer , Ferroptosis , Humanos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Muerte Celular/genética , Peroxidación de Lípido/genética , Hierro/metabolismo
20.
Neurology ; 100(20): e2114-e2124, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-36973044

RESUMEN

BACKGROUND AND OBJECTIVES: To evaluate brain volume changes caused by different subclasses of anti-ß-amyloid (Aß) drugs trailed in patients with Alzheimer disease. METHODS: PubMed, Embase, and ClinicalTrials.gov databases were searched for clinical trials of anti-Aß drugs. This systematic review and meta-analysis included adults enrolled in randomized controlled trials of anti-Aß drugs (n = 8,062-10,279). The inclusion criteria were as follows: (1) randomized controlled trials of patients treated with anti-Aß drugs that have demonstrated to favorably change at least one biomarker of pathologic Aß and (2) detailed MRI data sufficient to assess the volumetric changes in at least one brain region. MRI brain volumes were used as the primary outcome measure; brain regions commonly reported include hippocampus, lateral ventricle, and whole brain. Amyloid-related imaging abnormalities (ARIAs) were investigated when reported in clinical trials. Of the 145 trials reviewed, 31 were included in the final analyses. RESULTS: A meta-analysis on the highest dose of each trial on hippocampus, ventricle, and whole brain revealed drug-induced acceleration of volume changes that varied by anti-Aß drug class. Secretase inhibitors accelerated atrophy to the hippocampus (Δ placebo - Δ drug: -37.1 µL [19.6% more than placebo]; 95% CI -47.0 to -27.1) and whole brain (Δ placebo - Δ drug: -3.3 mL [21.8% more than placebo]; 95% CI -4.1 to 2.5). Conversely, ARIA-inducing monoclonal antibodies accelerated ventricular enlargement (Δ placebo - Δ drug: +2.1 mL [38.7% more than placebo]; 95% CI 1.5-2.8) where a striking correlation between ventricular volume and ARIA frequency was observed (r = 0.86, p = 6.22 × 10-7). Mild cognitively impaired participants treated with anti-Aß drugs were projected to have a material regression toward brain volumes typical of Alzheimer dementia ∼8 months earlier than if they were untreated. DISCUSSION: These findings reveal the potential for anti-Aß therapies to compromise long-term brain health by accelerating brain atrophy and provide new insight into the adverse impact of ARIA. Six recommendations emerge from these findings.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Adulto , Humanos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Anticuerpos Monoclonales/uso terapéutico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Atrofia/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA