Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Med Chem ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207123

RESUMEN

Triple-negative breast cancer (TNBC) is associated with poor prognosis because of the lack of effective therapies. Mixed-lineage protein kinase 3 (MLK3) is a protein that is often upregulated in TNBC and involved in driving the tumorigenic potential of cancer cells. Here, we present a selective MLK3 degrader, CEP1347-VHL-02, based on the pan-MLK inhibitor CEP1347 and a ligand for E3 ligase von Hippel-Lindau (VHL) by employing proteolysis-targeting chimera (PROTAC) technology. Our compound effectively targeted MLK3 for degradation via the ubiquitin-proteasome system in several cell line models but did not degrade other MLK family members. Furthermore, we showed that CEP1347-VHL-02 robustly degraded MLK3 and inhibited its oncogenic activity in TNBC, measured as a reduction of clonogenic and migratory potential, cell cycle arrest, and the induction of apoptosis in MDA-MB-468 cells. In conclusion, we present CEP1347-VHL-02 as a novel MLK3 degrader that may be a promising new strategy to target MLK3 in TNBC.

2.
Mol Cancer Ther ; : OF1-OF11, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853421

RESUMEN

Most patients with lung squamous cell carcinoma (LSCC) undergo chemotherapy, radiotherapy, and adjuvant immunotherapy for locally advanced disease. The efficacy of these treatments is still limited because of dose-limiting toxicity or locoregional recurrence. New combination approaches and targets such as actionable oncogenic drivers are needed to advance treatment options for patients with LSCC. Moreover, other options for chemotherapy-ineligible patients are limited. As such, there is a critical need for the development of selective and potent chemoradiosensitizers for locally advanced LSCC. In this study, we investigated inhibiting TRAF2- and NCK-interacting protein kinase (TNIK), which is amplified in 40% of patients with LSCC, as a strategy to sensitize LSCC tumors to chemotherapy and radiotherapy. Employing a range of human LSCC cell lines and the TNIK inhibitor NCB-0846, we investigated the potential of TNIK as a chemo- and radiosensitizing target with in vitro and in vivo preclinical models. The combination of NCB-0846 with cisplatin or etoposide was at best additive. Interestingly, pre-treating LSCC cells with NCB-0846 prior to ionizing radiation (IR) potentiated the cytotoxicity of IR in a TNIK-specific fashion. Characterization of the radiosensitization mechanism suggested that TNIK inhibition may impair the DNA damage response and promote mitotic catastrophe in irradiated cells. In a subcutaneous xenograft in vivo model, pretreatment with NCB-0846 significantly enhanced the efficacy of IR and caused elevated necrosis in TNIKhigh LK2 tumors but not TNIKlow KNS62 tumors. Overall, these results indicate that TNIK inhibition may be a promising strategy to increase the efficacy of radiotherapy in patients with LSCC with high TNIK expression.

3.
Mol Cancer Ther ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38670554

RESUMEN

Most patients with lung squamous cell carcinoma (LSCC) undergo chemotherapy, radiotherapy, and adjuvant immunotherapy for locally advanced disease. The efficacy of these treatments is still limited due to dose-limiting toxicity or locoregional recurrence. New combination approaches and targets such as actionable oncogenic drivers are needed to advance treatment options for LSCC patients. Moreover, other options for chemotherapy-ineligible patients are also limited. As such there is a critical need for the development of selective and potent chemoradiosensitizers for locally advanced LSCC. Here, we investigated inhibiting TRAF2 and NCK-interacting protein kinase (TNIK), which is amplified in 40% of LSCC patients, as a strategy to sensitize LSCC tumors to chemo- and radiotherapy. Employing a range of human LSCC cell lines and the TNIK inhibitor NCB-0846, we investigated the potential of TNIK as a chemo- and radiosensitizing target with in vitro and in vivo preclinical models. The combination of NCB-0846 with cisplatin or etoposide was at best additive. Interestingly, pre-treating LSCC cells with NCB-0846 prior to ionizing radiation (IR) potentiated the cytotoxicity of IR in a TNIK-specific fashion. Characterization of the radiosensitization mechanism suggested that TNIK inhibition may impair the DNA damage response and promote mitotic catastrophe in irradiated cells. In a subcutaneous xenograft in vivo model, pretreatment with NCB-0846 significantly enhanced the efficacy of IR and caused elevated necrosis in TNIKhigh LK2 tumors but not TNIKlow KNS62 tumors. Overall, these results indicate that TNIK inhibition may be a promising strategy to increase the efficacy of radiotherapy in LSCC patients with high TNIK expression.

4.
Nat Biotechnol ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459338

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.

5.
Cell Chem Biol ; 31(2): 326-337.e11, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38016478

RESUMEN

PIM kinases have important pro-tumorigenic roles and mediate several oncogenic traits, including cell proliferation, survival, and chemotherapeutic resistance. As a result, multiple PIM inhibitors have been pursued as investigational new drugs in cancer; however, response to PIM inhibitors in solid tumors has fallen short of expectations. We found that inhibition of PIM kinase activity stabilizes protein levels of all three PIM isoforms (PIM1/2/3), and this can promote resistance to PIM inhibitors and chemotherapy. To overcome this effect, we designed PIM proteolysis targeting chimeras (PROTACs) to target PIM for degradation. PIM PROTACs effectively downmodulated PIM levels through the ubiquitin-proteasome pathway. Importantly, degradation of PIM kinases was more potent than inhibition of catalytic activity at inducing apoptosis in prostate cancer cell line models. In conclusion, we provide evidence of the advantages of degrading PIM kinases versus inhibiting their catalytic activity to target the oncogenic functions of PIM kinases.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Fosforilación , Apoptosis , Proliferación Celular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-pim-1
6.
Ann Clin Transl Neurol ; 10(10): 1824-1832, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37553799

RESUMEN

BACKGROUND/OBJECTIVES: Several studies have shown a relationship between vitamin D and migraine, including the association between decreased serum 25-hydroxyvitamin D in patients with migraine and the positive effects of vitamin D supplementations in the therapy of this disease. Two single-nucleotide variants (SNVs) vitamin D receptor (VDR) gene, VDR rs2228570, and VDR rs731236 have shown an association with migraine risk in a previous case-control association study, while an exome sequencing study identified a rare variant in GC vitamin D binding protein gene. This study aims to look for the association between several common variants in these two genes and the risk for migraine. METHODS: We genotyped 290 patients diagnosed with migraine and 300 age-matched controls using specific TaqMan assays for VDR rs2228570, VDR rs731236, VDR rs7975232, VDR rs739837, VDR rs78783628, GC rs7041, and GC rs4588 SNVs. RESULTS: We did not find an association between these SNVs and the risk for migraine. None of these SNVs were related to the positivity of a family history of migraine or with the presence of aura. The VDR rs731236A allele showed a significant association with the triggering of migraine attacks by ethanol (Pc = 0.007). CONCLUSIONS: In summary, the results of the current study suggest a lack of association between common SNVs in the VDR and GC gene and the risk of developing migraine. The possible relationship between VDR rs731236 and the triggering of migraine episodes with ethanol deserves future studies.


Asunto(s)
Polimorfismo de Nucleótido Simple , Receptores de Calcitriol , Humanos , Receptores de Calcitriol/genética , Vitamina D , Genotipo , Etanol
8.
Expert Opin Drug Metab Toxicol ; 19(7): 447-460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37599424

RESUMEN

INTRODUCTION: Parkinson's disease is a chronic neurodegenerative multisystemic disorder that affects approximately 2% of the population over 65 years old. This disorder is characterized by motor symptoms which are frequently accompanied by non-motor symptoms such as cognitive disorders. Current drug therapies aim to reduce the symptoms and increase the patient's life expectancy. Nevertheless, there is heterogeneity in therapy response in terms of efficacy and adverse effects. This wide range in response may be linked to genetic variability. Thus, it has been suggested that pharmacogenomics may help to tailor and personalize drug therapy for Parkinson's disease. AREAS COVERED: This review describes and updates the clinical impact of genetic factors associated with the efficacy and adverse drug reactions related to common medications used to treat Parkinson's disease. Additionally, we highlight current informative recommendations for the drug treatment of Parkinson's disease. EXPERT OPINION: The pharmacokinetic, pharmacodynamic, and safety profiles of Parkinson's disease drugs do not favor the development of pharmacogenetic tests with a high probability of success. The chances of obtaining ground-breaking pharmacogenetics biomarkers for Parkinson's disease therapy are limited. Nevertheless, additional information on the metabolism of certain drugs, and an analysis of the potential of pharmacogenetics in novel drugs could be of interest.


Asunto(s)
Agonistas de Dopamina , Enfermedad de Parkinson , Humanos , Anciano , Agonistas de Dopamina/efectos adversos , Agonistas de Dopamina/farmacocinética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Antiparkinsonianos/efectos adversos , Farmacogenética , Levodopa/efectos adversos
9.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674807

RESUMEN

Several papers have been published suggesting a probable role of inflammatory factors in the etiopathogenesis of migraine. In this study, we investigated the possible association between common variants in the LAG3/CD4 genes (both genes, which are closely related, encode proteins involved in inflammatory and autoimmune responses) in the risk of migraine in a cohort of Caucasian Spanish participants. For this purpose, the frequencies of CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 genotypes and allelic variants, using a specific TaqMan-based qPCR assay, were assessed in 290 patients diagnosed with migraine and in 300 healthy controls. The relationship of these variables with several clinical features of migraine was also analyzed. The frequencies of the analyzed LAG3/CD4 genotypes did not differ significantly between the two study groups and were not related to the sex, age at onset of migraine, family history of migraine, presence or absence of aura, or the triggering effect of ethanol on migraine episodes. These results suggest a lack of association between common variants in the LAG3/CD4 genes and the risk of developing migraine in the Caucasian Spanish population.


Asunto(s)
Antígenos CD4 , Predisposición Genética a la Enfermedad , Proteína del Gen 3 de Activación de Linfocitos , Trastornos Migrañosos , Humanos , Genotipo , Trastornos Migrañosos/genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Antígenos CD4/genética , Proteína del Gen 3 de Activación de Linfocitos/genética
10.
Expert Rev Mol Diagn ; 22(5): 545-558, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35733288

RESUMEN

INTRODUCTION: Non-steroidal anti-inflammatory drugs and opioids are widely prescribed for the treatment of mild to severe pain. Wide interindividual variability regarding the analgesic efficacy and adverse reactions to these drugs (ADRs) exist although the mechanisms responsible for these ADRs are not well understood. AREAS COVERED: We provide an overview of the clinical impact of variants in genes related to the pharmacokinetics and pharmacodynamics of painkillers, as well as those associated with the susceptibility to ADRs. In addition, we discuss the current pharmacogenetic-guided treatment recommendations for the therapeutic use of non-steroidal anti-inflammatory drugs and opioids. EXPERT OPINION: In the light of the data analyzed, common variants in genes involved in pharmacokinetic and pharmacodynamic processes may partially explain the lack of response to painkiller treatment and the occurrence of adverse drug reactions. The implementation of high-throughput sequencing technologies may help to unveil the role of rare variants as considerable contributors to explaining the interindividual variability in drug response. Furthermore, a consensus between the diverse pharmacogenetic guidelines is necessary to extend the implementation of pharmacogenetic-guided prescription in daily clinical practice. Additionally, the physiologically based pharmacokinetic and pharmacodynamic modeling techniques may contribute to the improvement of these guidelines and facilitate clinician drug dose adjustment.


Asunto(s)
Analgésicos , Farmacogenética , Antiinflamatorios , Humanos , Farmacogenética/métodos
11.
Antioxidants (Basel) ; 11(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35204155

RESUMEN

Increased brain and serum zinc levels in patients with idiopathic restless legs syndrome (idiopathic RLS or iRLS) were described when compared with controls, suggesting a possible role of zinc in the pathogenesis of this disease. However, serum magnesium, calcium, manganese, iron, and copper levels of RLS patients were similar to controls, suggesting a specific impairment of zinc-dependent metabolism in RLS. The aim of this study is to assess the serum concentrations of trace elements involved in oxidative stress or causing peripheral nerve toxicity in a large series of patients with iRLS and controls. We determined serum levels of iron, copper, manganese, zinc, magnesium, selenium, calcium, aluminium, lead, cadmium, arsenic and mercury in 100 patients diagnosed with iRLS and in 110 age- and sex-matched controls using Inductively Coupled Plasma Mass Spectrometry. Serum copper, magnesium, selenium, and calcium concentrations were significantly higher in RLS patients than in controls. These differences were observed both in men and women. There were no major correlations between serum trace metal concentrations and age at onset of RLS or RLS severity, nor was there any association with a family history of RLS or drug response. This study shows an association between increased serum concentrations of copper, magnesium, selenium, and calcium with RLS in a Spanish Caucasian population and does not confirm the previously reported increase in serum zinc concentrations in patients suffering from this disease, suggesting that the different accuracy of the analytical methods used could have influenced the inconsistent results found in the literature.

12.
Mol Pharmacol ; 101(4): 191-200, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35115411

RESUMEN

Amplification of pro-oncogenic kinases is a common genetic alteration driving tumorigenic phenotypes. Cancer cells rely on the amplified kinases to sustain cell proliferation, survival, and growth, presenting an opportunity to develop therapies targeting the amplified kinases. Utilizing small molecule catalytic inhibitors as therapies to target amplified kinases is plagued by de novo resistance driven by increased expression of the target, and amplified kinases can drive tumorigenic phenotypes independent of catalytic activity. Here, we discuss the emergence of proteolysis-targeting chimeras that provide an opportunity to target these oncogenic drivers effectively. SIGNIFICANCE STATEMENT: Protein kinases contribute to tumorigenesis through catalytic and noncatalytic mechanisms, and kinase gene amplifications are well described mechanisms of resistance to small molecule catalytic inhibitors. Repurposing catalytic inhibitors for the development of protein degraders will offer improved clinical benefits by targeting noncatalytic functions of kinases that promote tumorigenesis and overcoming resistance due to amplification.


Asunto(s)
Neoplasias , Carcinogénesis/genética , Proliferación Celular , Amplificación de Genes , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Quinasas/genética
13.
J Pers Med ; 11(5)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068303

RESUMEN

Alcohol-related liver disease (ARLD) is a major public health issue caused by excessive alcohol consumption. ARLD encompasses a wide range of chronic liver lesions, alcohol-related liver cirrhosis being the most severe and harmful state. Variations in the genes encoding the enzymes, which play an active role in ethanol metabolism, might influence alcohol exposure and hence be considered as risk factors of developing cirrhosis. We conducted a case-control study in which 164 alcohol-related liver cirrhosis patients and 272 healthy controls were genotyped for the following functional single nucleotide variations (SNVs): ADH1B gene, rs1229984, rs1041969, rs6413413, and rs2066702; ADH1C gene, rs35385902, rs283413, rs34195308, rs1693482, and rs35719513; CYP2E1 gene, rs3813867. Furthermore, copy number variations (CNVs) for ADH1A, ADH1B, ADH1C, and CYP2E1 genes were analyzed. A significant protective association with the risk of developing alcohol-related liver cirrhosis was observed between the mutant alleles of SNVs ADH1B rs1229984 (Pc value = 0.037) and ADH1C rs283413 (Pc value = 0.037). We identified CNVs in all genes studied, ADH1A gene deletions being more common in alcohol-related liver cirrhosis patients than in control subjects, although the association lost statistical significance after multivariate analyses. Our findings support that susceptibility to alcohol-related liver cirrhosis is related to variations in alcohol metabolism genes.

14.
Antioxidants (Basel) ; 10(2)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33672092

RESUMEN

Adverse drug reactions are a major cause of morbidity and mortality. Of the great diversity of drugs involved in hypersensitivity drug reactions, the most frequent are non-steroidal anti-inflammatory drugs followed by ß-lactam antibiotics. The redox status regulates the level of reactive oxygen and nitrogen species (RONS). RONS interplay and modulate the action of diverse biomolecules, such as inflammatory mediators and drugs. In this review, we address the role of the redox status in the initiation, as well as in the resolution of inflammatory processes involved in drug hypersensitivity reactions. We summarize the association findings between drug hypersensitivity reactions and variants in the genes that encode the enzymes related to the redox system such as enzymes related to glutathione: Glutathione S-transferase (GSTM1, GSTP, GSTT1) and glutathione peroxidase (GPX1), thioredoxin reductase (TXNRD1 and TXNRD2), superoxide dismutase (SOD1, SOD2, and SOD3), catalase (CAT), aldo-keto reductase (AKR), and the peroxiredoxin system (PRDX1, PRDX2, PRDX3, PRDX4, PRDX5, PRDX6). Based on current evidence, the most relevant candidate redox genes related to hypersensitivity drug reactions are GSTM1, TXNRD1, SOD1, and SOD2. Increasing the understanding of pharmacogenetics in drug hypersensitivity reactions will contribute to the development of early diagnostic or prognosis tools, and will help to diminish the occurrence and/or the severity of these reactions.

15.
Cancer Discov ; 11(6): 1411-1423, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33495197

RESUMEN

Lung squamous cell carcinoma (LSCC) is the second most prevalent type of lung cancer. Despite extensive genomic characterization, no targeted therapies are approved for the treatment of LSCC. Distal amplification of the 3q chromosome is the most frequent genomic alteration in LSCC, and there is an urgent need to identify efficacious druggable targets within this amplicon. We identify the protein kinase TNIK as a therapeutic target in LSCC. TNIK is amplified in approximately 50% of LSCC cases. TNIK genetic depletion or pharmacologic inhibition reduces the growth of LSCC cells in vitro and in vivo. In addition, TNIK inhibition showed antitumor activity and increased apoptosis in established LSCC patient-derived xenografts. Mechanistically, we identified the tumor suppressor Merlin/NF2 as a novel TNIK substrate and showed that TNIK and Merlin are required for the activation of focal adhesion kinase. In conclusion, our data identify targeting TNIK as a potential therapeutic strategy in LSCC. SIGNIFICANCE: Targeted therapies have not yet been approved for the treatment of LSCC, due to lack of identification of actionable cancer drivers. We define TNIK catalytic activity as essential for maintaining LSCC viability and validate the antitumor efficacy of TNIK inhibition in preclinical models of LSCC.This article is highlighted in the In This Issue feature, p. 1307.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Ratones , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/genética
16.
J Biol Chem ; 295(25): 8470-8479, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32358059

RESUMEN

Identifying additional mitogen-activated protein kinase (MAPK) pathway regulators is invaluable in aiding our understanding of the complex signaling networks that regulate cellular processes, including cell proliferation and survival. Here, using in vitro kinase assays and by expressing WT or kinase-dead MAPK kinase kinase 19 (MAP3K19) in the HEK293T cell line and assessing activation of the extracellular signal-regulated kinase (ERK) and JUN N-terminal kinase (JNK) signaling pathways, we defined MAP3K19 as a novel regulator of MAPK signaling. We also observed that overexpression of WT MAP3K19 activates both the ERK and JNK pathways in a panel of cancer cell lines. Furthermore, MAP3K19 sustained ERK pathway activation in the presence of inhibitors targeting the RAF proto-oncogene Ser/Thr protein kinase (RAF) and MAPK/ERK kinase, indicating that MAP3K19 activates ERK via a RAF-independent mechanism. Findings from in vitro and in-cell kinase assays demonstrate that MAP3K19 is a kinase that directly phosphorylates both MAPK/ERK kinase (MEK) and MAPK kinase 7 (MKK7). Results from an short-hairpin RNA screen indicated that MAP3K19 is essential for maintaining survival in KRAS-mutant cancers; therefore, we depleted or inhibited MAP3K19 in KRAS-mutant cancer cell lines and observed that this reduces viability and decreases ERK and JNK pathway activation. In summary, our results reveal that MAP3K19 directly activates the ERK and JNK cascades and highlight a role for this kinase in maintaining survival of KRAS-mutant lung cancer cells.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
17.
Handb Exp Pharmacol ; 259: 133-162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31227890

RESUMEN

The diacylglycerol kinases (DGKs) are master regulator kinases that control the switch from diacylglycerol (DAG) to phosphatidic acid (PA), two lipids with important structural and signaling properties. Mammalian DGKs distribute into five subfamilies that regulate local availability of DAG and PA pools in a tissue- and subcellular-restricted manner. Pharmacological manipulation of DGK activity holds great promise, given the critical contribution of specific DGK subtypes to the control of membrane structure, signaling complexes, and cell-cell communication. The latest advances in the DGK field have unveiled the differential contribution of selected isoforms to human disease. Defects in the expression/activity of individual DGK isoforms contribute substantially to cognitive impairment, mental disorders, insulin resistance, and vascular pathologies. Abnormal DGK overexpression, on the other hand, confers the acquisition of malignant traits including invasion, chemotherapy resistance, and inhibition of immune attack on tumors. Translation of these findings into therapeutic approaches will require development of methods to pharmacologically modulate DGK functions. In particular, inhibitors that target the DGKα isoform hold particular promise in the fight against cancer, on their own or in combination with immune-targeting therapies.


Asunto(s)
Diacilglicerol Quinasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Transducción de Señal , Animales , Humanos , Neoplasias , Fosforilación , Isoformas de Proteínas
18.
Cancers (Basel) ; 11(12)2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31817861

RESUMEN

Protein kinases are critical regulators of signaling cascades that control cellular proliferation, growth, survival, metabolism, migration, and invasion. Deregulation of kinase activity can lead to aberrant regulation of biological processes and to the onset of diseases, including cancer. In this review, we focus on oncogenic kinases and the signaling pathways they regulate that underpin tumor development. We highlight genomic biomarker-based precision medicine intervention strategies that match kinase inhibitors alone or in combination to mutationally activated kinase drivers, as well as progress towards implementation of these treatment strategies in the clinic. We also discuss the challenges for identification of novel protein kinase cancer drivers in the genomic era.

19.
J Antimicrob Chemother ; 74(11): 3281-3290, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31369088

RESUMEN

BACKGROUND: Efavirenz primary metabolism is catalysed by CYP2B6 with minor involvement of CYP2A6. Subsequently, phase I metabolites are conjugated by UGT2B7, and constitutive androstane receptor (CAR) has been shown to transcriptionally regulate many relevant enzymes and transporters. Several polymorphisms occurring in the genes coding for these proteins have been shown to impact efavirenz pharmacokinetics in some but not all studies. OBJECTIVES: A meta-analysis was performed to assess the overall effect of CYP2B6 rs3745274, CYP2A6 (rs28399454, rs8192726 and rs28399433), UGT2B7 (rs28365062 and rs7439366) and NR1I3 (rs2307424 and rs3003596) polymorphisms on mid-dose efavirenz plasma concentrations. METHODS: Following a literature review, pharmacokinetic parameters were compiled and a meta-analysis for these variants was performed using Review Manager and OpenMetaAnalyst. A total of 28 studies were included. RESULTS: Unsurprisingly, the analysis confirmed that individuals homozygous for the T allele for CYP2B6 rs3745274 had significantly higher efavirenz concentrations than those homozygous for the G allele [weighted standard mean difference (WSMD) = 2.98; 95% CI 2.19-3.76; P < 0.00001]. A subgroup analysis confirmed ethnic differences in frequency but with a similar effect size in each ethnic group (P = 0.96). Associations with CYP2A6 and UGT2B7 variants were not statistically significant, but T homozygosity for CAR rs2307424 was associated with significantly lower efavirenz concentrations than in C homozygotes (WSMD = -0.32; 95% CI -0.59 to -0.06; P = 0.02). CONCLUSIONS: This meta-analysis provides the overall effect size for the impact of CYP2B6 rs3745274 and NR1I3 rs2307424 on efavirenz pharmacokinetics. The analysis also indicates that some previous associations were not significant when interrogated across studies.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Benzoxazinas/sangre , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2B6/genética , Glucuronosiltransferasa/genética , Metaloendopeptidasas/genética , Inhibidores de la Transcriptasa Inversa/sangre , Alquinos , Fármacos Anti-VIH/sangre , Fármacos Anti-VIH/farmacocinética , Benzoxazinas/farmacocinética , Receptor de Androstano Constitutivo , Ciclopropanos , Variación Genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/etnología , Humanos , Polimorfismo de Nucleótido Simple , Inhibidores de la Transcriptasa Inversa/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA