Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067887

RESUMEN

Infrared radiation thermometers (IRTs) overcome many of the limitations of thermocouples, particularly responsiveness and calibration drift. The main challenge with radiation thermometry is the fast and reliable measurement of temperatures close to room temperature. A new IRT which is sensitive to wavelengths between 3 µm and 11 µm was developed and tested in a laboratory setting. It is based on an uncooled indium arsenide antimony (InAsSb) photodiode, a transimpedance amplifier, and a silver halogenide fibre optic cable transmissive in the mid- to long-wave infrared region. The prototype IRT was capable of measuring temperatures between 35 °C and 100 °C at an integration time of 5 ms and a temperature range between 40 °C and 100 °C at an integration time of 1 ms, with a root mean square (RMS) noise level of less than 0.5 °C. The thermometer was calibrated against Planck's law using a five-point calibration, leading to a measurement uncertainty within ±1.5 °C over the aforementioned temperature range. The thermometer was tested against a thermocouple during drilling operations of polyether ether ketone (PEEK) plastic to measure the temperature of the drill bit during the material removal process. Future versions of the thermometer are intended to be used as a thermocouple replacement in high-speed, near-ambient temperature measurement applications, such as electric motor condition monitoring; battery protection; and machining of polymers and composite materials, such as carbon-fibre-reinforced plastic (CFRP).

2.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35808192

RESUMEN

During the machining process, substantial thermal loads are generated due to tribological factors and plastic deformation. The increase in temperature during the cutting process can lead to accelerated tool wear, reducing the tool's lifespan; the degradation of machining accuracy in the form of dimensional inaccuracies; and thermally induced defects affecting the metallurgical properties of the machined component. These effects can lead to a significant increase in operational costs and waste which deviate from the sustainability goals of Industry 4.0. Temperature is an important machining response; however, it is one of the most difficult factors to monitor, especially in high-speed machining applications such as drilling and milling, because of the high rotational speeds of the cutting tool and the aggressive machining environments. In this article, thermocouple and infrared radiation temperature measurement methods used by researchers to monitor temperature during turning, drilling and milling operations are reviewed. The major merits and limitations of each temperature measurement methodology are discussed and evaluated. Thermocouples offer a relatively inexpensive solution; however, they are prone to calibration drifts and their response times are insufficient to capture rapid temperature changes in high-speed operations. Fibre optic infrared thermometers have very fast response times; however, they can be relatively expensive and require a more robust implementation. It was found that no one temperature measurement methodology is ideal for all machining operations. The most suitable temperature measurement method can be selected by individual researchers based upon their experimental requirements using critical criteria, which include the expected temperature range, the sensor sensitivity to noise, responsiveness and cost.

3.
Materials (Basel) ; 9(8)2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28773757

RESUMEN

The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...