Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232375

RESUMEN

Alterations of the epigenetic machinery are critically involved in cancer development and maintenance; therefore, the proteins in charge of the generation of epigenetic modifications are being actively studied as potential targets for anticancer therapies. A very important and widespread epigenetic mark is the dimethylation of Histone 3 in Lysine 36 (H3K36me2). Until recently, it was considered as merely an intermediate towards the generation of the trimethylated form, but recent data support a more specific role in many aspects of genome regulation. H3K36 dimethylation is mainly carried out by proteins of the Nuclear SET Domain (NSD) family, among which NSD2 is one of the most relevant members with a key role in normal hematopoietic development. Consequently, NSD2 is frequently altered in several types of tumors-especially in hematological malignancies. Herein, we discuss the role of NSD2 in these pathological processes, and we review the most recent findings in the development of new compounds aimed against the oncogenic forms of this novel anticancer candidate.


Asunto(s)
Enfermedades Hematológicas , Neoplasias , Epigénesis Genética , Enfermedades Hematológicas/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Represoras/genética
2.
Nucleic Acids Res ; 50(15): 8471-8490, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35904805

RESUMEN

Correct B cell identity at each stage of cellular differentiation during B lymphocyte development is critically dependent on a tightly controlled epigenomic landscape. We previously identified HDAC7 as an essential regulator of early B cell development and its absence leads to a drastic block at the pro-B to pre-B cell transition. More recently, we demonstrated that HDAC7 loss in pro-B-ALL in infants associates with a worse prognosis. Here we delineate the molecular mechanisms by which HDAC7 modulates early B cell development. We find that HDAC7 deficiency drives global chromatin de-condensation, histone marks deposition and deregulates other epigenetic regulators and mobile elements. Specifically, the absence of HDAC7 induces TET2 expression, which promotes DNA 5-hydroxymethylation and chromatin de-condensation. HDAC7 deficiency also results in the aberrant expression of microRNAs and LINE-1 transposable elements. These findings shed light on the mechanisms by which HDAC7 loss or misregulation may lead to B cell-based hematological malignancies.


Asunto(s)
Linfocitos B/citología , Epigénesis Genética , Linfocitos B/metabolismo , Cromatina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Epigenómica , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos
4.
Trends Immunol ; 41(1): 46-60, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31822368

RESUMEN

B lymphopoiesis is tightly regulated at the level of gene transcription. In recent years, investigators have shed light on the transcription factor networks and the epigenetic machinery involved at all differentiation steps of mammalian B cell development. During terminal differentiation, B cells undergo dramatic changes in gene transcriptional programs to generate germinal center B cells, plasma cells and memory B cells. Recent evidence indicates that mature B cell formation involves an essential contribution from 3D chromatin conformations through its interplay with transcription factors and epigenetic machinery. Here, we provide an up-to-date overview of the coordination between transcription factors, epigenetic changes, and chromatin architecture during terminal B cell differentiation, focusing on recent discoveries and technical advances for studying 3D chromatin structures.


Asunto(s)
Linfocitos B , Diferenciación Celular , Cromatina , Factores de Transcripción , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Diferenciación Celular/genética , Cromatina/inmunología , Epigénesis Genética/inmunología , Humanos , Linfopoyesis , Factores de Transcripción/genética , Factores de Transcripción/inmunología
5.
J Exp Med ; 213(12): 2591-2601, 2016 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-27810920

RESUMEN

Class IIa histone deacetylase (HDAC) subfamily members are tissue-specific gene repressors with crucial roles in development and differentiation processes. A prominent example is HDAC7, a class IIa HDAC that shows a lymphoid-specific expression pattern within the hematopoietic system. In this study, we explored its potential role in B cell development by generating a conditional knockout mouse model. Our study demonstrates for the first time that HDAC7 deletion dramatically blocks early B cell development and gives rise to a severe lymphopenia in peripheral organs, while also leading to pro-B cell lineage promiscuity. We find that HDAC7 represses myeloid and T lymphocyte genes in B cell progenitors through interaction with myocyte enhancer factor 2C (MEFC2). In B cell progenitors, HDAC7 is recruited to promoters and enhancers of target genes, and its absence leads to increased enrichment of histone active marks. Our results prove that HDAC7 is a bona fide transcriptional repressor essential for B cell development.


Asunto(s)
Linfocitos B/metabolismo , Eliminación de Gen , Histona Desacetilasas/metabolismo , Animales , Linaje de la Célula , Elementos de Facilitación Genéticos/genética , Código de Histonas , Histona Desacetilasas/deficiencia , Factores de Transcripción MEF2/metabolismo , Ratones , Células Precursoras de Linfocitos B/metabolismo , Regiones Promotoras Genéticas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA