Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(6)2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36980610

RESUMEN

Breast cancer is considered the solid tumor most sensitive to chemotherapy. However, it can become resistant to various chemotherapeutic drugs, including doxorubicin, which triggers cell death by intercalation between DNA bases, free radical formation, and topoisomerase II inhibition. When drug resistance develops, several miRNAs are dysregulated, suggesting that miRNAs may play a significant role in resistance formation. In the current study, we investigated how doxorubicin sensitivity of breast cancer cells is affected by miR-153-3p and its target gene. The MTT method was used to determine the chemo-sensitizing effect of miR-153-3p on doxorubicin in MCF-7 and MDA-MB-231 cell lines. Results of Western blot and dual luciferase confirmed that miR-153-3p targets KIF20A and decreases its expression. Transwell and flow cytometry experiments showed that miR-153-3p and doxorubicin together had higher effects on MCF-7 and MDA-MB-231 cell proliferation, migration, and invasion, as well as increasing apoptosis and arresting cells in the G1 phase. Proteins related to apoptosis and the cell cycle exhibited the same tendency. Intracellular vesicle formation was inhibited and RAB26 was also downregulated by treatment with miR-153-3p alone or in combination with doxorubicin. Doxorubicin's ability to suppress tumors may be enhanced by miR-153-3p, according to in vivo studies. According to our findings, miR-153-3p has a direct effect on KIF20A and may regulate the formation of intracellular vesicles, which in turn makes breast cancer cells more susceptible to doxorubicin.

2.
Onco Targets Ther ; 14: 1821-1841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33732000

RESUMEN

Cancer is the second leading cause of mortality worldwide. Conventional therapies, including surgery, radiation, and chemotherapy, have limited success because of secondary resistance. Therefore, safe, non-resistant, less toxic, and convenient drugs are urgently required. Natural products (NPs), primarily sourced from medicinal plants, are ideal for cancer treatment because of their low toxicity and high success. NPs cure cancer by regulating different pathways, such as PI3K/AKT/mTOR, ER stress, JNK, Wnt, STAT3, MAPKs, NF-kB, MEK-ERK, inflammation, oxidative stress, apoptosis, autophagy, mitophagy, and necroptosis. Among the NPs, steroid saponins, including polyphyllins (I, II, D, VI, and VII), have potent pharmacological, analgesic, and anticancer activities for the induction of cytotoxicity. Recent research has demonstrated that polyphyllins (PPs) possess potent effects against different cancers through apoptosis, autophagy, inflammation, and necroptosis. This review summarizes the available studies on PPs against cancer to provide a basis for future research.

3.
Chem Biol Drug Des ; 97(4): 914-929, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33342040

RESUMEN

Cancer is the leading cause of mortality in the world. The major therapies for cancer treatment are chemotherapy, surgery, and radiation therapy. All these therapies expensive, toxic and show resistance. The plant-derived compounds are considered safe, cost-effective and target cancer through different pathways. In these pathways include oxidative stress, mitochondrial dependent and independent, STAT3, NF-kB, MAPKs, cell cycle, and autophagy pathways. One of the new plants derived compounds is Polyphyllin VII (PPVII), which target cancer through different molecular mechanisms. In literature, there is a review gap of studies on PPVII; therefore in the current review, we summarized the available studies on PPVII to provide a base for future research.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Saponinas/farmacología , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
4.
Cytotechnology ; 72(5): 685-694, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32685991

RESUMEN

Glioblastoma multiforme is the most common primary central nervous system malignancy, accounting for half of all intracranial primary tumors. In this study we constructed a multifunctional chlorotoxin fusion protein E-CHP that combines enhanced green fluorescent protein (E), glioma-targeting peptide chlorotoxin (C), destabilizing lipid membrane peptide riHA2 (H), and C-terminal and mouse double minute domains of p53 (P). E-CHP was expressed in Escherichia coli and purified by His affinity chromatography. Fluorescence microscopy observation showed that E-CHP could effectively target glioma cells; real-time quantitative PCR revealed that E-CHP increased miR-374a expression; and the dual luciferase reporter assay showed that tumor necrosis factor alpha-induced protein (TNFAIP)8 is a direct target of miR-374a. E-CHP and miR-374a inhibited the proliferation and migration of glioma cells, and Western blot analysis indicated that they suppressed TNFAIP8 expression in glioma cells and promoted the expression of caspase-3 and -8. Finally, E-CHP and miR-374a stimulated the apoptosis of glioma cells, as determined by flow cytometry analysis. These results suggest that miR-374a is a new candidate target for glioma therapy, whereas E-CHP fusion protein has the potential to be developed as a multifunctional carrier for targeted drug delivery and therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...