Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Sci ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38761864

RESUMEN

Dengue, caused by the dengue virus (DENV), is a prevalent arthropod-borne disease in humans and poses a significant burden on public health. Severe cases of dengue can be life-threatening. Although a licensed dengue vaccine is available, its efficacy varies across different virus serotypes and may exacerbate the disease in some seronegative recipients. Developing a safe and effective vaccine against all DENV serotypes remains challenging and requires continued research. Conventional approaches in dengue vaccine development, using live or attenuated microorganisms or parts of them often contain unnecessary epitopes, risking allergenic or autoimmune reactions. To address these challenges, innovative strategies such as peptide vaccines have been explored. Peptide vaccines offer a safer alternative by inducing specific immune responses with minimal immunogenic fragments. Chemical modification strategies of peptides have revolutionized their design, allowing for the incorporation of multi-epitope presentation, self-adjuvanting features, and self-assembling properties. These modifications enhance the antigenicity of the peptides, leading to improved vaccine efficacy. This review outlines advancements in peptide-based dengue vaccine development, leveraging nanoparticles as antigen-displaying platforms. Additionally, key immunological considerations for enhancing efficacy and safety against DENV infection have been addressed, providing insight into the next-generation of dengue vaccine development leveraging on peptide-nanoparticle technology.

2.
Int J Infect Dis ; 125: 216-226, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36336246

RESUMEN

OBJECTIVES: This study reported SARS-CoV-2 whole genome sequencing results from June 2021 to January 2022 from seven genome sequencing centers in Malaysia as part of the national surveillance program. METHODS: COVID-19 samples that tested positive by reverse transcription polymerase chain reaction and with cycle threshold values <30 were obtained throughout Malaysia. Sequencing of SARS-CoV-2 complete genomes was performed using Illumina, Oxford Nanopore, or Ion Torrent platforms. A total of 6163 SARS-CoV-2 complete genome sequences were generated over the surveillance period. All sequences were submitted to the Global Initiative on Sharing All Influenza Data database. RESULTS: From June 2021 to January 2022, Malaysia experienced the fourth wave of COVID-19 dominated by the Delta variant of concern, including the original B.1.617.2 lineage and descendant AY lineages. The B.1.617.2 lineage was identified as the early dominant circulating strain throughout the country but over time, was displaced by AY.59 and AY.79 lineages in Peninsular (west) Malaysia, and the AY.23 lineage in east Malaysia. In December 2021, pilgrims returning from Saudi Arabia facilitated the introduction and spread of the BA.1 lineage (Omicron variant of concern) in the country. CONCLUSION: The changing trends of circulating SARS-CoV-2 lineages were identified, with differences observed between west and east Malaysia. This initiative highlighted the importance of leveraging research expertise in the country to facilitate pandemic response and preparedness.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Malasia/epidemiología , COVID-19/epidemiología , Genómica , Pandemias
3.
Microorganisms ; 9(11)2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34835327

RESUMEN

Owing to genotype-specific neutralizing antibodies, analyzing differences in the immunogenic variation among dengue virus (DENV) genotypes is central to effective vaccine development. Herein, we characterized the viral kinetics and antibody response induced by DENV type 2 Asian I (AI) and Asian/American (AA) genotypes using marmosets (Callithrix jacchus) as models. Two groups of marmosets were inoculated with AI and AA genotypes, and serial plasma samples were collected. Viremia levels were determined using quantitative reverse transcription-PCR, plaque assays, and antigen enzyme-linked immunosorbent assay (ELISA). Anti-DENV immunoglobulin M and G antibodies, neutralizing antibody titer, and antibody-dependent enhancement (ADE) activity were determined using ELISA, plaque reduction neutralization test, and ADE assay, respectively. The AI genotype induced viremia for a longer duration, but the AA genotype induced higher levels of viremia. After four months, the neutralizing antibody titer induced by the AA genotype remained high, but that induced by the AI genotype waned. ADE activity toward Cosmopolitan genotypes was detected in marmosets inoculated with the AI genotype. These findings indicate discrepancies between heterologous genotypes that influence neutralizing antibodies and viremia in marmosets, a critical issue in vaccine development.

4.
Trans R Soc Trop Med Hyg ; 114(11): 798-811, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32735681

RESUMEN

BACKGROUND: A periodic serosurvey of dengue seroprevalence is vital to determine the prevalence of dengue in countries where this disease is endemic. This study aimed to determine the prevalence of dengue immunoglobulin G (IgG) seropositivity among healthy Malaysian adults living in urban and rural areas. METHODS: A total of 2598 serum samples (1417 urban samples, 1181 rural samples) were randomly collected from adults ages 35-74 y. The presence of the dengue IgG antibody and neutralising antibodies to dengue virus (DENV) 1-4 was determined using enzyme-linked immunosorbent assay and the plaque reduction neutralisation test assay, respectively. RESULTS: The prevalence of dengue IgG seropositivity was 85.39% in urban areas and 83.48% in rural areas. The seropositivity increased with every 10-y increase in age. Ethnicity was associated with dengue seropositivity in urban areas but not in rural areas. The factors associated with dengue seropositivity were sex and working outdoors. In dengue IgG-positive serum samples, 98.39% of the samples had neutralising antibodies against DENV3, but only 70.97% of them had neutralising antibodies against DENV4. CONCLUSION: The high seroprevalence of dengue found in urban and rural areas suggests that both urban and rural communities are vital for establishing and sustaining DENV transmission in Malaysia.


Asunto(s)
Virus del Dengue , Dengue , Epidemias , Adulto , Anciano , Anticuerpos Antivirales , Dengue/epidemiología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G , Malasia/epidemiología , Persona de Mediana Edad , Población Rural , Estudios Seroepidemiológicos
5.
Virol J ; 15(1): 51, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29587780

RESUMEN

BACKGROUND: A vaccine against all four dengue virus (DENV) serotypes includes the formulation of one genotype of each serotype. Although genetic similarities among genotypes within a serotype are higher as compared to those among serotypes, differences in the immunogenicity of the included genotypes would be a critical issue in maximizing successful dengue vaccine development. Thus, we determined the neutralizing antibody responses against three genotypes of dengue virus serotype 2 (DENV-2), namely Cosmopolitan, Asian I, and Asian/American, after primary and secondary inoculation with DENV-2 in a dengue animal model, the common marmoset (Callithrix jacchus). METHODS: A total of fifty-four plasma samples were obtained from thirty-four marmosets that were inoculated with clinically-isolated DENV strains or DENV candidate vaccines, were used in this study. Plasma samples were obtained from marmosets after primary inoculation with DENV-2 infection, secondary inoculation with homologous or heterologous genotypes, and tertiary inoculation with heterologous DENV. Neutralizing antibody titers against DENV-2 (Cosmopolitan, Asian I, and Asian/American genotypes) and DENV-1 were determined using a conventional plaque reduction neutralization assay. RESULTS: In marmosets that were inoculated with the Cosmopolitan genotype in primary infection, neutralizing antibody neutralized 3 genotypes, and the titers to Asian I genotype were significantly higher than those to homologous Cosmopolitan genotype. After secondary DENV-2 infection with heterologous genotype (Asian I in primary and Asian/American in secondary), neutralizing antibody titers to Asian/American genotype was significantly higher than those against Cosmopolitan and Asian I genotypes. Following tertiary infection with DENV-1 following DENV-2 Asian I and Cosmopolitan genotypes, neutralizing antibody titers to Asian/American were also significantly higher than those against Cosmopolitan and Asian I genotypes. CONCLUSION: The present study demonstrated that different levels of neutralizing antibodies were induced against variable DENV-2 genotypes after primary, secondary and tertiary infections, and that neutralizing antibody titers to some heterologous genotypes were higher than those to homologous genotypes within a serotype. The results indicate that heterogeneity and homogeneity of infecting genotypes influence the levels and cross-reactivity of neutralizing antibodies induced in following infections. The results also suggest that certain genotypes may possess advantage in terms of breakthrough infections against vaccination.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Callithrix/inmunología , Coinfección/inmunología , Virus del Dengue/genética , Virus del Dengue/inmunología , Dengue/inmunología , Genotipo , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Callithrix/virología , Coinfección/sangre , Reacciones Cruzadas/inmunología , Dengue/sangre , Dengue/prevención & control , Vacunas contra el Dengue/inmunología , Virus del Dengue/clasificación , Modelos Animales de Enfermedad , Pruebas de Neutralización , Serogrupo
6.
Methods Mol Biol ; 1426: 273-82, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27233280

RESUMEN

Neutralization assay is a technique that detects and quantifies neutralizing antibody in serum samples by calculating the percentage of reduction of virus activity, as the concentration of virus used is usually constant. Neutralizing antibody titer is conventionally determined by calculating the percentage reduction in total virus infectivity by counting and comparing number of plaques (localized area of infection due to cytopathic effect) with a standard amount of virus. Conventional neutralizing test uses plaque-reduction neutralization test (PRNT) to determine neutralizing antibody titers against Chikungunya virus (CHIKV). Here we describe the plaque reduction neutralization assay (PRNT) using Vero cell lines to obtain neutralizing antibody titers.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Fiebre Chikungunya/sangre , Virus Chikungunya/inmunología , Pruebas de Neutralización/métodos , Animales , Línea Celular , Fiebre Chikungunya/inmunología , Chlorocebus aethiops , Humanos , Células Vero , Ensayo de Placa Viral
7.
BMC Infect Dis ; 13: 67, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23379541

RESUMEN

BACKGROUND: In 1998, Malaysia experienced its first chikungunya virus (CHIKV) outbreak in the suburban areas followed by another two in 2006 (rural areas) and 2008 (urban areas), respectively. Nevertheless, there is still a lack of documented data regarding the magnitude of CHIKV exposure in the Malaysian population. The aim of this study was to determine the extent of chikungunya virus infection in healthy Malaysian adults residing in outbreak-free locations. METHODS: A cross sectional study of chikungunya (CHIK) seroprevalence was carried out in 2009 amongst The Malaysian Cohort participants living in four states (Kuala Lumpur, Selangor, Pahang and Negeri Sembilan). A total of 945 participants were randomly identified for the study. Potential risk factors for CHIK infection were determined via questionnaires, and IgG antibodies against CHIK were detected by an enzyme-linked immunosorbent assay. Logistic regression identified risk factors associated with CHIK seropositivity, while geographical information system was used for visual and spatial analysis. RESULTS: From the 945 serum samples tested, 5.9% was positive for CHIK IgG. Being male, Malay, rural occupancy and Negeri Sembilan residency were identified as univariate predictors for CHIK seropositivity, while multivariate analysis identified being male and rural occupancy as risk factors. CONCLUSIONS: This study provided evidence that CHIK is slowly emerging in Malaysia. Although the current baseline seroprevalence is low in this country, increasing number of CHIK cases reported to the Malaysia Ministry of Health imply the possibility of CHIK virus becoming endemic in Malaysia.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Anticuerpos Antivirales/sangre , Virus Chikungunya/inmunología , Adulto , Anciano , Fiebre Chikungunya , Estudios Transversales , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina G/sangre , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Estudios Seroepidemiológicos , Encuestas y Cuestionarios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...