Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 337: 139390, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37402427

RESUMEN

Aiming to upgrade agro-forest wastes into value-added solid and gaseous fuels in the present investigation, hydrothermal carbonization (HTC) of spruce (SP), canola hull (CH), and canola meal (CM) was optimized in terms of operating conditions, maximizing the higher heating value of hydrochars. The optimal operating conditions were achieved at HTC temperature, reaction time, and solid-to-liquid ratio of 260 °C, 60 min, and 0.2 g mL-1, respectively. At the optimum condition, succinic acid (0.05-0.1 M) was used as HTC reaction medium to investigate the effects of acidic medium on the fuel characteristics of hydrochars. The succinic acid assisted HTC was found to eliminate ash-forming minerals e.g., K, Mg, and Ca from hydrochar backbones. The calorific values, H/C and O/C atomic ratios of hydrochars were in the range of 27.6-29.8 MJ kg-1, 0.8-1.1, and 0.1-0.2, respectively, indicating the biomass upgrading into coal-like solid fuels. Finally, hydrothermal gasification of hydrochars with their corresponding HTC aqueous phase (HTC-AP) was assessed. Gasification of CM resulted in a relatively high H2 yield of 4.9-5.5 mol kg-1 followed by that for SP with 4.0-4.6 mol H2 per kg of hydrochars. Results suggest that hydrochars and HTC-AP have a great potential for H2 production via hydrothermal co-gasification, while suggesting HTC-AP reuse.


Asunto(s)
Carbono , Ácido Succínico , Temperatura , Agua , Carbón Mineral
2.
J Environ Sci (China) ; 34: 68-76, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26257348

RESUMEN

In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration.


Asunto(s)
Contaminantes Atmosféricos/química , Contaminación del Aire/prevención & control , Dióxido de Carbono/química , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Adsorción , Carbono/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA