Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36559861

RESUMEN

Essential oils (EOs) are complex mixtures of volatile and semi-volatile organic compounds that originate from different plant tissues, including flowers, buds, leaves and bark. According to their chemical composition, EOs have a characteristic aroma and present a wide spectrum of applications, namely in the food, agricultural, environmental, cosmetic and pharmaceutical sectors. These applications are mainly due to their biological properties. However, EOs are unstable and easily degradable if not protected from external factors such as oxidation, heat and light. Therefore, there is growing interest in the encapsulation of EOs, since polymeric nanocarriers serve as a barrier between the oil and the environment. In this context, nanoencapsulation seems to be an interesting approach as it not only prevents the exposure and degradation of EOs and their bioactive constituents by creating a physical barrier, but it also facilitates their controlled release, thus resulting in greater bioavailability and efficiency. In this review, we focused on selecting recent articles whose objective concerned the nanoencapsulation of essential oils from different plant species and highlighted their chemical constituents and their potential biotechnological applications. We also present the fundamentals of the most commonly used encapsulation methods, and the biopolymer carriers that are suitable for encapsulating EOs.

2.
Biomolecules ; 12(11)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36421726

RESUMEN

Considerable efforts have been spent on the development of biodefensives based on the encapsulation of essential oils for controlling of urban pests from their larval stage, especially as anopheline controlling agents. The larval source management of Anopheles aquasalis is important for malaria prevention. For this reason, this research proposes larvicidal biodefensives based on polymeric particles loaded with Piper nigrum essential oil, considering the influence of temperature (35 °C) and preservatives on the formulation stability. The biodefensive containing the preservative phenoxyethanol/methylisothiazolinone (PNE) resulted in 5 months of shelf-life storage with an Encapsulation Efficiency (EE%) of essential oil of 70%. The biodefensive PNE (containing 500 µg.mL-1 of encapsulated essential oil) presented a polydisperse particle size distribution, ranging from D10 = (127 ± 10) nm to D90 = (472 ± 78) nm and a particle mean size of (236 ± 34) nm. The AFM images revealed a spherical morphology with an external surface almost regular and smooth. The controlled release of the essential oil was evaluated up to 72 h according to the Korsmeyer-Peppas mathematical model, confirming the anomalous transport (n = 0.64 in pH = 3 and pH = 10, and n = 0.65 in pH = 7). The total larvae mortality on the in loco bioassays was almost reached (92%) after 24 h. However, according to the in vitro bioassays applying the in natura essential oil alone, the concentration of 454 µg.mL-1 resulted on the mortality of 70% of the larvae after 24 h. For this reason, the highest efficiency of the biodefensive PNE may be related to the encapsulation of essential oil, delivering the loaded particles more efficiently inside the larvae. From this perspective, the present study shows that a formulation based on P. nigrum essential oil may be taken into account in the integrated management of disease vector mosquitoes.


Asunto(s)
Anopheles , Aceites Volátiles , Piper nigrum , Animales , Larva , Aceites Volátiles/farmacología , Temperatura , Mosquitos Vectores
3.
Materials (Basel) ; 15(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955350

RESUMEN

Considerable efforts have been spent on environmentally friendly particles for the encapsulation of essential oils. Polymeric particles were developed to encapsulate the essential oil from Piper nigrum based on gelatin and poly-ε-caprolactone (PCL) carriers. Gas Chromatography ((Flame Ionization Detection (GC/FID) and Mass Spectrometry (GC/MS)), Atomic Force Microscopy (AFM), Nanoparticle Tracking Analysis (NTA), Confocal Laser Scanning Microscopy (CLSM), Attenuated Total Reflectance-Fourier-transform Infrared Spectroscopy (ATR-FTIR), and Ultraviolet-Visible (UV-VIS) spectroscopy were used for the full colloidal system characterization. The essential oil was mainly composed of ß-caryophyllene (~35%). The stability of the encapsulated systems was evaluated by Encapsulation Efficiency (EE%), electrical conductivity, turbidity, pH, and organoleptic properties (color and odor) after adding different preservatives. The mixture of phenoxyethanol/isotialzoni-3-one (PNE system) resulted in enhanced stability of approximately 120 and 210 days under constant handling and shelf-life tests, respectively. The developed polymeric system presented a similar controlled release in acidic, neutral, or basic pH, and the release curves suggested a pulsatile release mechanism due to a complexation of essential oil in the PCL matrix. Our results showed that the developed system has potential as an alternative stable product and as a controlling agent, due to the pronounced bioactivity of the encapsulated essential oil.

4.
Microsc Res Tech ; 85(11): 3633-3641, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35916245

RESUMEN

Gelatin/PCL bilayered particles loaded with Piper nigrum essential oil was synthesized aiming to access their morphological and surface dynamic patterns. Atomic force microscopy (AFM) was applied to investigate the 3D morphology and multifractal aspects of the particles surface. The AFM maps revealed spherical surfaces and well dispersed particles, besides a rougher surface on the loaded system. Minkowski functionals showed that shape of the rough peaks was similar in the unloaded and loaded systems; however, the presence of deep valleys on the loaded particles revealed their rougher pattern. Multifractal analysis revealed that unloaded and loaded particles presented multifractal behavior with different surface dynamics. The loaded surface presented a greater width of the multifractal spectrum and smaller difference of fractal dimensions, confirming their more vertically growing. These results can be useful in the development of novel polymeric-based particles loaded with essential oil. Their unique surface dynamics can provide enhanced physical properties and performance in emerging biotechnological applications.


Asunto(s)
Aceites Volátiles , Fractales , Gelatina , Microscopía de Fuerza Atómica , Polímeros , Propiedades de Superficie
5.
Nanotechnology ; 32(34)2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34081026

RESUMEN

Increasing interest in nanoparticles of technological application has been improving their fabrication processes. The encapsulation of essential oils as bioactive compounds has proved to be an excellent alternative to the use of less environment friendly compounds. However, the difficulty of identifying their constitution and interaction with carrier agents have aroused scientific interest and a problem to overcome. Bilayer-based nanoparticles were developed using gelatin and poly-ε-caprolactone (PCL) aiming the encapsulation ofPiper nigrumessential oil. based on atomic force microscopy images and dynamic light scattering analysis, the size of the unloaded and loaded nanoparticles was found around (194 ± 40) and (296 ± 54) nm, respectively. The spatial patterns revealed that the surface of nanoparticles presented different surface roughness, similar shapes and height distribution asymmetry, lower dominant spatial frequencies, and different spatial complexity. Traditional infrared spectroscopy allowed the identification of the nanoparticle outermost layer formed by the gelatin carrier, but microscopy-based infrared spectroscopy revealed a band at 1742 cm-1related to the carbonyl stretching mode of PCL, as well as a band at 1557 cm-1due to the amide II group from gelatin. The combination of microscopy and spectroscopy techniques proved to be an efficient alternative to quickly identify differences in chemical composition by evaluating different functional groups in bilayer PLC/gelatin nanoparticles of technological application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...