Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(9): e30392, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737238

RESUMEN

Good health and well-being is one of the sustainable development goals (SDGs) that can be achieved through fruit consumption. This study measured cucumber (Cucumis sativus L.) heavy metal concentrations. Inductively coupled plasma-mass spectrometry (ICP-OES) was used to analyze the samples for heavy metal content. The uncertainty and sensitivity analyses of carcinogenic and non-carcinogenic heavy metal intake via cucumber (Cucumis sativus L.) consumption were assessed by Monte Carlo simulation. The mean ± SD levels of Cu, Pb, Zn, Cd, and As were determined to be 157.87 ± 128.54, 33.81 ± 6.27, 288.46 ± 114.59, 35.22 ± 18.67, and 33.6 ± 18.1 µg/kg, respectively. The 95th percentile of HI related to heavy metal intake via cucumber (Cucumis sativus L.) among children and adults were 2.64 and 1.75, respectively. Also, the 95th percentile of ELCR related to heavy metal were 8.26E-4 and 4.14E-3 among children and adults, respectively. The 95th percentile of LTCR of As among adults and As, Cd, and Pb among children were in the WHO target range (1E-04 to 1E-06) so reducing the concentration of them can help to reduce overall LTCR. When HQ and LTCR are below the cut limits, reducing heavy metals in high-consumption meals is a good way to lower them. In general, due to the wide consumption of various fruits, such as cucumber (Cucumis sativus L.), the concentration of environmental pollutants in their edible tissues should be monitored regularly, and the concentration of pollutants in these tissues should be minimized by proper planning.

2.
Heliyon ; 10(4): e25919, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38404893

RESUMEN

In the study, the proliferation of industries has been associated with an increase in the production of industrial wastewater and subsequent environmental pollution, wherein dyes emerge as prominent pollutants. The characteristics of nanoclay modified with octadecylamine, were elucidated throughvarious techniques, including Field Emission Scanning Electron Microscopy/Energy Dispersive Spectroscopy (FE-SEM/EDS), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), X-ray Diffraction (XRD), and Brunauer-Emmett-Teller Surface Area Analysis (BET). The research delved into the impact of variables such as pH, initial dye concentration, adsorbent dose, temperature, and ultrasonication time on the removal of Acid Black 1 (AB1) through an ultrasonic process, employing a central composite design (CCD). Optimal conditions for the adsorption process were determined: pH at 5.46, adsorbent mass at 4 mg/30 mL, initial dye concentration at 20 mg/L, ultrasound time at 20 min, and temperature at 50 °C, resulting in a remarkable 96.49% adsorption efficiency. The fitting of experimental equilibrium data to different isotherm models, including Langmuir, Freundlich, and Temkin, indicated thatthe Freundlich model was the most suitable. Analysis of the adsorption data with various kinetic models such as pseudo-first and second-order models, and intraparticle diffusion models, revealed the applicability of the second-order equation model. A thermodynamic study unveiled that the adsorption process was spontaneous and endothermic. In conclusion, the study highlights the significant capability ofmontmorillonite nanoclay modified with octadecylamine in removing AB1 dye, rendering it a viable option for wastewater treatment.

3.
Environ Pollut ; 341: 122901, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37951524

RESUMEN

Excessive nitrate consumption has been linked to potential health risks in humans. Thus, understanding nitrate levels in staple foods such as cow milk can provide insights into their health implications. This study meticulously examined nitrate concentrations in 70 cow milk samples from traditional and industrialized cattle farming systems in Fars province, Iran. A combination of deterministic modeling, a probabilistic approach, and six artificial intelligence algorithms was employed to determine health risk assessments. The data disclosed average nitrate concentrations of 32.63 mg/L in traditional farming and 34.95 mg/L in industrialized systems, presenting no statistically significant difference (p > 0.05). The Hazard Quotient (HQ) was deployed to gauge potential health threats, underscoring heightened vulnerability in children, who exhibited HQ values ranging from 0.05 to 0.58 (mean = 0.19) in contrast to adults, whose values spanned 0.01 to 0.16 (mean = 0.05). Monte Carlo simulations enriched the risk assessment, demarcating the 5th and 95th percentile nitrate concentrations for children at 0.07 and 0.39, respectively. In children, pivotal interactions that influenced HQ encompassed those between nitrate concentration and consumption rate, as well as nitrate concentration and body weight. The interplay between nitrate concentration and consumption rate was most consequential for the adult cohort. Among the algorithms assessed for HQ prediction, Gaussian Naive Bayes (GNB) was optimal for children and eXtreme Gradient Boosting (XGB) for adults, with nitrate concentration being a key determinant. The results underscore the imperative for rigorous oversight of milk nitrate concentrations, highlighting the enhanced susceptibility of children and emphasizing the need for preventive strategies and enlightened consumption.


Asunto(s)
Leche , Nitratos , Adulto , Niño , Femenino , Humanos , Animales , Bovinos , Nitratos/análisis , Irán , Leche/química , Teorema de Bayes , Inteligencia Artificial , Compuestos Orgánicos , Medición de Riesgo
4.
Environ Geochem Health ; 46(1): 5, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097886

RESUMEN

Groundwater is one of the most important sources of drinking and irrigation water in arid and semi-arid areas. This study aimed to investigate the chemical quality of groundwater for drinking and irrigation, assess the non-carcinogenic risk factors resulting from the concentration of fluoride and nitrate ions, and analyze the sensitivity among children, teenagers, and adults using Monte Carlo method. A total of 171 samples were obtained from confined groundwater in Arsanjan. Among other hydrological parameters of water, EC had the highest average (1135.97). TDS ranged from 67.90 to 1878.30 mg/L, with the lowest and highest total hardness values being 2.90 and 680.8, respectively. The water quality index (WQI) results indicated that 33% of the samples were at the poor water level and the irrigation (IWQI) was less than 25 in 96.36% of the samples, which were categorized as excellent. Thus, the majority of the samples were suitable for irrigation purposes. Additionally, the oral and dermal health risks of fluoride and nitrate were less than 1 in all age groups. Concentration factor was the main indicator in the assessment of the non-carcinogenic risk factors of nitrate and fluoride. The results of sensitivity analysis revealed a reverse relationship with body weight. Further, the results of principal component analysis (PCA) showed a negative relationship between fluoride concentration and pH. Hierarchical cluster analysis also showed that the study variables belonged to three main clusters. Some elements in C1 were also found in the first factor in PCA. The elements in C2 were among the dominant compounds of the groundwater resources of the study area, which may be caused by earth cations or human activities. C3 variables may also be one of the consequences of fertilizer use in areas around groundwater sources.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Adulto , Adolescente , Humanos , Fluoruros/análisis , Nitratos/análisis , Monitoreo del Ambiente/métodos , Método de Montecarlo , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Agua Subterránea/química , Medición de Riesgo , Agua Potable/análisis
5.
Sci Rep ; 13(1): 19080, 2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37925586

RESUMEN

Exposure to heavy metals in contaminated drinking water is strongly correlated with various cancers, highlighting the burden of disease. This study aimed to assess the non-carcinogenic and carcinogenic risks associated with exposure to heavy metals (As, Pb, Cd, and Cr) in drinking water of Fars province and evaluate the attributed burden of disease. Non-carcinogenic risk assessment was performed using the hazard quotient (HQ) method, while the carcinogenic risk assessment utilized the excess lifetime cancer risk approach. The burden of disease was evaluated in terms of years of life lost, years lived with disability, and disability-adjusted life years (DALY) for three specific cancers: skin, lung, and kidney cancer. The average drinking water concentrations of arsenic (As), cadmium (Cd), chromium (Cr) and lead (Pb) were determined to be 0.72, 0.4, 1.10 and 0.72 µg/L, respectively. The total average HQ of heavy metals in drinking water in the study area were 0.127, 0.0047, 0.0009 and 0.0069, respectively. The average ILCRs of heavy metal in the entire country were in the following order: 1.15 × 10-5 for As, 2.22 × 10-7 for Cd and 3.41 × 10-7 for Cr. The results also indicated that among the various counties analyzed, Fasa experiences the greatest burden of disease in terms of DALYs, with a value of 87.56, specifically attributed to cancers caused by exposure to arsenic. Generally, it can be said that the burden of disease is a critical aspect of public health that requires comprehensive understanding and effective intervention.


Asunto(s)
Arsénico , Carcinoma de Células Renales , Agua Potable , Neoplasias Renales , Metales Pesados , Humanos , Arsénico/toxicidad , Arsénico/análisis , Años de Vida Ajustados por Discapacidad , Agua Potable/efectos adversos , Agua Potable/análisis , Cadmio , Irán/epidemiología , Plomo , Monitoreo del Ambiente/métodos , Metales Pesados/toxicidad , Metales Pesados/análisis , Cromo , Carcinógenos/análisis , Carcinogénesis , Medición de Riesgo
6.
Environ Sci Pollut Res Int ; 30(51): 111076-111091, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37798522

RESUMEN

Although the fundamental reasons for cognitive function disorders have been well documented, little is known about the impact of environmental exposures, such as pesticides, on children's cognitive function development. This study investigated the effect of exposure to organophosphate pesticides on children's cognitive function. In order to determine various factors of exposure, hair samples were collected from 114 elementary school children who lived in Boyer-Ahmad County in the province of Kohgiluyeh and Boyer-Ahmad, Iran. A detailed questionnaire was utilized to gather demographic information and exposure profile. Pesticides were detected in hair samples using a gas chromatography-mass spectrometer (GC-MS); also, cognitive function was assessed using the trail-making test (TMT), which was divided into two parts: TMT-part A and TMT-part B. Participants in the study were 10.12 ± 1.440 years old on average. Children in rural areas had higher mean total pesticide concentrations (13.612 ± 22.01 ng/g) than those who lived in the urban areas (1.801 ± 1.32). The results revealed that boys (46.44 s and 92.37 s) completed the TMT-part A and part B tests in less time than girls (54.95 s and 109.82 s), respectively, and showed better performance (2.14) on the cognitive function exam than girls (2.07). Diazinon and TMT-part B were positively correlated (p < 0.05). With the increase in pesticides, there was no discernible difference in cognitive function. Pesticide use throughout a child's development may affect certain cognitive function indicators. In order to assess causal relationships, group studies and case studies are required because the current research was cross-sectional in nature.


Asunto(s)
Insecticidas , Plaguicidas , Masculino , Femenino , Humanos , Niño , Estudios Transversales , Agricultura , Plaguicidas/análisis , Exposición a Riesgos Ambientales/análisis , Compuestos Organofosforados , Diazinón , Cognición
7.
Chemosphere ; 341: 139987, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37659511

RESUMEN

Given water's vital role in supporting life and ecosystems, global climate change and human activities have significantly diminished its availability and quality. This study explores the health risks of drinking water consumption in the shiraz county water resources and distribution system. The result showed that the water was slightly alkaline. However, the average pH values during the study were within the permissible range. The area's abundance of total hardness and calcium was due to the high concentration of minerals in rocks and soils. The nitrate and fluoride concentrations in drinking groundwater varied from 0.02 to 116.70 mg/L and 0.10-1.85 mg/L, respectively. Although the water quality index indicated that 52.63, 45.03, and 20.3 percent of samples were of excellent, good, and poor quality in 2020, those percentages obtained 46.05, 52.09, and 14.0 percent in 2021. The regression values of training, testing, validation, and the proposed artificial neural network model were 0.93, 0.92, 0.85, and 0.92. The maximum levels of hazard quotient of nitrate and fluoride (except for adults) were higher than 1 in all age groups, indicating a high non-carcinogenic risk by exposure to nitrate. Furthermore, according to the Monte Carlo simulation, the 95th percentile hazard index in all groups was more than 1. Children and infants were more inclined towards risk than teens and adults based on the intake of nitrate and fluoride from drinking water. The Sobol sensitivity reflected that the nitrate concentration and ingestion rate are vital parameters that influence the outcome of the oral exposure model for all age groups. The interaction of ingestion rate with a concentration of nitrate and fluoride is an important parameter affecting the health risk assessment. In conclusion, these findings suggest that precise measures can reduce health risks and guarantee safe drinking water for residents of Shiraz County.


Asunto(s)
Agua Potable , Recursos Hídricos , Adulto , Niño , Lactante , Adolescente , Humanos , Nitratos , Fluoruros , Ecosistema , Medición de Riesgo
8.
Environ Geochem Health ; 45(11): 7665-7677, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37415002

RESUMEN

Overuse of aluminum salts (a.k.a., alum) in coagulation and flocculation processes in water treatment raises concerns about increased levels of aluminum (Al) in drinking water. In this study, we present a probabilistic human health risk assessment (HRA) for non-cancerogenic risks, with Sobol sensitivity analysis, to vet the concern of increased health risk from Al in drinking water in Shiraz, Iran, for children, adolescents, and adults. The results show that the concentration of Al in the drinking water in Shiraz varies significantly between winter and summer seasons and varies considerably spatially across the city irrespective of the season. However, all concentrations are below the guideline concentration. The HRA results show that the highest health risk is for children in summer, and the lowest is for adolescents and adults during winter, with generally higher health risks for younger age groups. However, Monte Carlo results for all age groups suggest no adverse health effects due to Al exposure. The sensitivity analysis shows that the sensitive parameters vary across age groups. For example, the Al concentration and ingestion rate pose the most risk for adolescent and adult groups, and children group, respectively. More importantly, the interaction of Al concentration with ingestion rate and body weight is the controlling parameters for evaluating HRA rather than Al concentration alone. We conclude that while the HRA of Al in Shiraz drinking water did not indicate significant health risk, regular monitoring and optimal operation of the coagulation and flocculation processes are essential.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Niño , Adulto , Adolescente , Humanos , Agua Potable/análisis , Aluminio/toxicidad , Aluminio/análisis , Irán , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Monitoreo del Ambiente/métodos , Agua Subterránea/análisis
9.
Sci Rep ; 13(1): 9484, 2023 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-37301947

RESUMEN

Widespread use of benzophenones (BPs), a group of environmental phenolic compounds, is suspected of interfering with human health. The association of prenatal exposure to benzophenone derivatives with birth outcomes including birth weight and length, head, arm and thoracic circumference, abnormalities, corpulence index and anterior fontanelle diameter (AFD) was investigated. Mother-infant pairs of 166 within PERSIAN cohort population in Isfahan, Iran, in the 1st and 3rd trimesters of pregnancy were assessed. Four common benzophenone metabolites including 2,4-dihydroxy benzophenone (BP-1), 2-hydroxy-4-methoxy benzophenone (BP-3), 4-hydroxy benzophenone (4-OH-BP) and 2,2'-dihydroxy-4-methoxy benzophenone (BP-8) were measured in maternal urine samples. The median concentration of 4-OH-BP, BP-3, BP-1 and BP-8 were 3.15, 16.98, 9.95 and 1.04 µg/g Cr, respectively. In the 1st trimester, 4-OH-BP showed a significant correlation with AFD in total infants, decreasing 0.034 cm AFD per a log unit increase of 4-OH-BP. Within the male neonates, 4-OH-BP in the 1st and BP-8 in the 3rd trimester were significantly associated with head circumference and AFD increase, respectively. Among female neonates in the 3rd trimester, increasing 4-OH-BP and BP-3 concentration was correlated with a decrease in birth weight and AFD, respectively. This study demonstrated that all the target BP derivatives can influence normal fetal growth at any age of the pregnancy, nevertheless, to support these findings further studies are needed in a large and different group population.


Asunto(s)
Benzofenonas , Exposición Materna , Recién Nacido , Lactante , Humanos , Masculino , Embarazo , Femenino , Exposición Materna/efectos adversos , Peso al Nacer , Benzofenonas/efectos adversos , Madres
10.
Regul Toxicol Pharmacol ; 135: 105264, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36152980

RESUMEN

This study aims at investigating the quality of drinking water and evaluating the non-carcinogenic risk of fluoride and nitrate ions in drinking water, and fluoride in tea in Zarrin Dasht, Iran. We focus on tea since it is the most popular drink among Iranian people and in the study region. We collected and analyzed 23 drinking water samples and 23 tea samples from different locations in the study region. Based on the water quality index, the consumed drinking water does not have a good quality in most Zarrin Dasht areas. Accordingly, the water quality index (WQI) is poor and very poor in 70% and 13% of the water samples, respectively. The average fluoride concentration of the tea samples is 2.71 mg/L. The mean values of Fluoride Hazard Index (HIfluoride) are 3.77, 2.77, and 2.33 for children, teenagers, and adults, respectively, which are higher than the safe limit of 1. The Nitrate Hazard Index (HInitrate) is higher than the safe limit of 1 in 8.7% of the samples. The results of the Monte Carlo simulation demonstrate that HIfluoride and HInitrate are higher than 1 in all the groups, except for adults. According to the results of the sensitivity analysis, ingestion rate and body weight have a large effect on HIfluoride and HInitrate, but body weight is inversely associated with sensitivity. According to the Piper diagram, saline water is the predominant type in Zarrin Dasht. Besides, the results of the principal component analysis (PCA) show a high correlation between fluoride and pH, which could be related to the effect of pH on fluoride dissolution and ion exchange. Therefore, appropriate measures are recommended to be taken in order to reduce the amount of fluoride in the drinking water resources of this region. Reduction of tea consumption can also be considered an important factor in decreasing the amount of fluoride intake.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Adolescente , Adulto , Peso Corporal , Niño , Agua Potable/análisis , Monitoreo del Ambiente/métodos , Fluoruros/análisis , Agua Subterránea/análisis , Humanos , Irán , Nitratos , Medición de Riesgo , , Contaminantes Químicos del Agua/análisis , Calidad del Agua
11.
Environ Res ; 214(Pt 3): 113938, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35977584

RESUMEN

Co-presence of fluoride (F-) and nitrate (NO3-) in water causes numerous health complications. Thus, they should be eliminated by an appropriate method like the EC process. In this research, simultaneous removal of F- and NO3- from synthetic aqueous solution and groundwater has been considered by the EC technique under operational parameters like anode materials (un-coated (Al and Fe) and synthesized coated (Ti/TiRuSnO2 and Ti/PbO2)), cathode materials (Cu, St, and Gr), current density (12, 24, and 36 mA/cm2), inter-electrode distance (0.5, 1, and 2 cm), pH (5.5, 7, and 8.5), NaCl concentrations (0.5, 1, and 1.5 g/L), electrolysis time (15, 30, 45, 60, 90, and 120 min), NO3- concentrations (75, 150, and 225 mg/L), and F- concentrations (2, 4, 6, and 8 mg/L) for the first time in this research. The results proved that Al as non-coated anode and Cu as cathode electrodes were more effective in the co-removal of F- and NO3-. The maximum removal efficiencies of 94.19 and 95% were observed at the current density of 36 mA/cm2, 1 cm of inter-electrode distance, pH 7, 1 g/L of NaCl, and 90 min electrolysis time by Al-Cu electrode for F- (2 mg/L) and NO3- (75 mg/L), respectively. The higher efficiency of Al-Cu electrodes was due to the simultaneous occurrence of electrocoagulation, electroreduction, and electrooxidation processes. Al-Cu electrode application considerably diminished f- and NO3- concentrations in the groundwater. Health risk assessment proved that HQ of F- was significantly decreased after treatment by the Al-Cu electrode. Thus, the EC process using an appropriate and effective electrode is a promising technique for treating aqueous solutions containing F- and NO3-.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Electrodos , Fluoruros , Humanos , Nitratos , Óxidos de Nitrógeno , Oxidación-Reducción , Cloruro de Sodio , Agua , Contaminantes Químicos del Agua/análisis
12.
Environ Res ; 212(Pt D): 113385, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35569533

RESUMEN

The pharmaceutical contamination in aquatic environment has arisen increasing concern due to its potentially chronic toxicity. In recent years, HO° and SO4°- based advanced oxidation processes (AOPs) have been widely applied in water and wastewater treatments due to their highly efficiency on contaminant removal. Here, the response surface modeling (RSM) was used to investigate the degradation of three typical pharmaceuticals (i.e., etodolac (ETD), febuxostat (FBU) and imatinib mesylate (IMT)) by UV/H2O2 and UV/S2O82- processes. Based on the multiple regression analysis on full factorial design matrix and calculated reaction rate constants, the RSM was built. The experimental rate constants under optimal conditions were quite close to those obtained from the model, implying the good fit of the RSM. In addition, the RSM results indicated that UV/S2O82- process was less sensitive to pH in comparison to the UV/H2O2 process on target contaminant removal. Finally, it showed that UV/S2O82- process was superior to the UV/H2O2 process to on the enhancement of target contaminant biodegradability.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Etodolaco , Febuxostat , Peróxido de Hidrógeno , Mesilato de Imatinib , Oxidación-Reducción , Estrés Oxidativo , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
13.
Environ Res ; 212(Pt A): 113147, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35341750

RESUMEN

Among the contaminants found in groundwater, arsenic poses a great threat to human health and the ecosystem. Therefore, it is vital to eliminate arsenic from water sources. This study utilizes one of the most efficient and emerging decontamination techniques known as the sono-electrocoagulation method. In recent years, sono-electrocoagulation has attracted many scientists due to its unique features, such as being cost-effective, rapid process, and high efficiency. The required groundwater samples were artificially synthesized in the laboratory, where the anode and cathode were determined to be Fe, Ti/PbO2, and Al, respectively. During the experiment, the impact of pH (5,6,7,8), various initial concentrations (100, 200, 300,400, 500, 600 µg/l), exposure times of 5,10,15,20,25 min, electrode distances of 1.5,2,2.5,3,3.5 cm and different current intensities of 5,10,15,20,25 mA/cm2 were examined. The ambient temperature of the laboratory was kept at 30 and 40 °C. Furthermore, this study showed that the system containing Ti/PbO2 as the anode and Al as the cathode electrodes removed arsenic contamination more effectively in the base environment. The performance of arsenic removal was directly related to current intensity, pH, and time. Nevertheless, time elapse played a negative factor due to the corrosion of the electrodes' surface and the dissolution of floating materials in the solution. With the surge of arsenic concentration from 100 to 300 mg/L, the arsenic removal efficiency increased from 61.9 to 98.5 percent, where the maximum removal efficiency due to the rise of the current intensity was 84.16 percent. The sono-electrocoagulation method reduced the risk of carcinogenic and non-carcinogenicity from 5.15E-03 to 7.73E-05 and 26.71 to 0.40. Accordingly, it was found that a combination of ultrasonic and electrocoagulation processes is a promising approach for arsenic removal.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Ecosistema , Electrocoagulación/métodos , Humanos , Medición de Riesgo , Agua , Purificación del Agua/métodos
14.
Artículo en Inglés | MEDLINE | ID: mdl-35055545

RESUMEN

The aim of this study is to investigate the concentration of Benzene, Toluene, Ethylbenzene, and Xylene (BTEX) compounds in the indoor air of residential-commercial complexes and to compare it with other residential buildings (control) as well as to assess the carcinogenicity and non-carcinogenicity risk of these pollutants. BTEX concentration was investigated in the indoor air of 30 ground floor restaurants, 30 upper residential units of the complexes, 20 adjacent residential units (control), and their corridors. The mean BTEX concentration measured in the upper residential units was reported higher than in the control residential units, though they were not significantly different. The lifetime cancer risk (LTCR) value calculated for benzene in the upper residential units was lower than 10-4 and higher than 10-6 across all ages, indicating a carcinogenicity risk. Furthermore, the mean hazard quotient (HQ) for all compounds was obtained lower than 1, suggesting no concern about the non-carcinogenicity risk of these compounds in the studied region. Nevertheless, considering the sources of benzene production in the indoor air as well as the carcinogenicity of these pollutants and the risk they pose in human health, application towards the reduction of the sources and concentration of benzene in the indoor air are necessary.


Asunto(s)
Contaminantes Atmosféricos , Xilenos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Benceno/análisis , Benceno/toxicidad , Derivados del Benceno/análisis , Derivados del Benceno/toxicidad , Monitoreo del Ambiente , Humanos , Irán/epidemiología , Tolueno/análisis , Tolueno/toxicidad , Xilenos/análisis
15.
Environ Res ; 203: 111850, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34370987

RESUMEN

Exposure to nitrate, nitrite, and fluoride through drinking water consumption, especially in arid and semi-arid regions, has been considered by many researchers. Therefore, the present study aimed to investigate the status of nitrate, nitrite, fluoride, and total coliforms in water supply sources of Kazerun located in Fars province, Iran, determine their spatial distribution, and perform health risk assessment in four age groups (infants, children, teenagers, and adults). In this research, the concentration data of 25 groundwater wells were examined. Then, the spatial distribution of the contaminants was determined using the Arc GIS software (v. 10.5) and their health risk assessment was performed via the standard method of the US Environmental Protection Agency. The maximum concentrations of nitrate, nitrite, and fluoride were 25.5, 0.056, and 0.72 mg/l, respectively and their mean concentrations were 13.5, 0.008, and 0.52 mg/l, respectively. In addition, the mean and maximum concentrations of coliforms were 371.21 and 2694.50 CFU/100 ml, respectively. The total coliforms value was higher than the permissible limit in 60 % of the cases. The highest Chronic Daily Intake (CDI) of the studied contaminants was related to nitrate among children (range: 0.21-1.45, with an average value of 0.77 mg/kg-day). Moreover, the Hazard Quotient (HQ) values were below 1 for all contaminants and in all age groups. The highest HQ value (0.9) belonged to nitrate amongst children. Furthermore, the Hazard Index (HI), as a cumulative effect of HQ, was calculated for all three contaminants and the results showed that it was greater than 1 in 56 % of the cases among children, which was considered a serious risk. The findings revealed no significant relationship between nitrate and nitrite concentrations and total coliforms. Overall, nitrate seemed to play a more critical role in the health risk of the exposed age groups in comparison to nitrite and fluoride. Hence, appropriate managerial measures are recommended to be taken.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Adolescente , Adulto , Niño , Agua Potable/análisis , Monitoreo del Ambiente , Fluoruros/análisis , Humanos , Lactante , Irán , Nitratos/análisis , Nitritos , Medición de Riesgo , Contaminantes Químicos del Agua/análisis
16.
Environ Sci Pollut Res Int ; 29(17): 24682-24695, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34826089

RESUMEN

In recent decades, emerging environmental pollutants such as endocrine-disrupting chemicals (EDCs) have become a particular concern. This study examined the association of maternal exposure to benzophenones as one of the EDCs with gestational age and evaluated their effects on birth outcomes including birth weight, birth length, head circumference, and Ponderal Index. We assessed 166 pregnant mothers of the PERSIAN cohort population of Isfahan, Iran, in the 1st and 3rd trimesters of pregnancy and their infants at birth. Four common benzophenones (BPs) including 2,4-dihydroxy benzophenone (BP-1), 2-hydroxy-4-methoxy benzophenone (BP-3), 4-hydroxy benzophenone (4-OH-BP), and 2,2'-dihydroxy-4-methoxy benzophenone (BP-8) were measured in maternal urine samples. The median urinary concentrations of 4-OH-BP, BP-3, BP-1, and BP-8 in the 1st trimester were 6.62, 7.5, 4.39, and 1.32 µg/g creatinine and those in the 3rd trimester were 3.15, 16.98, 9.95, and 1.04 µg/g creatinine, respectively. BP-3 was the predominant metabolite in both trimesters. There was a significant correlation between BP-3, BP-1, and 4-OH-BP levels (p < 0.05) but not BP-8. BP-1 showed a significant positive association with gestational age (GA) in all infants in the 1st trimester, but a negative association was observed between BP-3 and BP-1 levels and GA in girls. Classification of infants' birth weight for different GAs represented that the majority of them were appropriate for GA. However, boys' weights were heavier than girls. Also, birth outcomes of preterm (< 37 weeks) infants were noticeably lower than term infants (37-42 weeks). This study demonstrated that benzophenone derivatives especially BP-3 can affect the duration of pregnancy and consequently fetal growth in the early and late stages of pregnancy. This is more pronounced in girls; however, more investigations in a different population are needed to prove the results. Therefore, the application of these compounds as a UV protector requires precise regulation to reduce exposure, especially in pregnant women.


Asunto(s)
Disruptores Endocrinos , Efectos Tardíos de la Exposición Prenatal , Benzofenonas , Peso al Nacer , Creatinina , Disruptores Endocrinos/orina , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Masculino , Exposición Materna , Embarazo
17.
Sci Rep ; 11(1): 15133, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301964

RESUMEN

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay is the most common method for the determination of cell toxicity, but some factors limit the sensitivity of this method, such as pH. Less attention had been paid to the interference effect of optical and plasmonic properties of SiO2 nanoparticles (NPs) in the wavelength range assigned to MTT. This study investigated the synergistic interference effect of SiO2 NPs and wavelength on MTT assay for the first time. The examined variables included the type of SiO2 NPs concentrations (1, 10, and 100 mM) and different wavelengths (470, 490, 520, and 570 nm). The results showed that optical density (OD) increased (p < 0.05) when wavelength and the concentration of crystalline SiO2 NPs increased. So, the maximum OD at 10 and 100 mM were attributed to crystalline SiO2 NPs (p < 0.05) due to the functional group, whereas it was related to amorphous at 1 mM (p > 0.05). According to polynomial regression modeling (PRM), the maximum interference effect was predicted at crystalline SiO2 NPs and wavelength > 550 nm. Besides, the synergistic effects of SiO2 NPs, wavelength, and concentration of NPs had been a good fitting with first-order PRM. Thus, the concentration of SiO2 NPs had a confounder factor in colorimetric for MTT assay. The best artificial neural network (ANN) structure was related to the 3:7:1 network (Rall = 0.936, MSE = 0.0006, MAPE = 0.063). The correlation between the actual and predicted data was 0.88. As SiO2 NPs presence is an interfering factor in MTT assay concerning wavelength, it is suggested wavelength use with minimum confounding effect for MTT assay.


Asunto(s)
Nanopartículas/química , Dióxido de Silicio/química , Bioensayo/métodos , Línea Celular , Colorimetría/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos
18.
J Environ Health Sci Eng ; 19(1): 985-995, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34150286

RESUMEN

Less attention had been paid to cell toxicity of the various synthesis methods of nanoparticles, this study investigated the effect of the calcination temperature(CT) on the crystallization of SiO2 nanoparticles(NPs), cell proliferation(CP), and cellular uptake(CU) in MRC-5. In this study, parameters were adjusted as CT(70-1000 °C), calcination time(2, 12, and 24 h), and catalyst feed rate(0.01, 0.05, and 0.1 mL.min1). CP was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) test after a 24-h exposure. The CU was achieved using ICP-MS. Results were analyzed using MATLAB2018. Results revealed that the size of synthesized particles was lower than 50 nm and, the XRD peak varied from 21 to 30° during the increase in CT. FTIR spectra confirmed the existence of Si-O and Si-Cl bonds. The maximum level of crystallization was at 1000 °C. CP decreased with the rise in the concentration of NPs(p < 0.05), as well as an increase in feed rate. A positive relationship between increased crystallization and decreased CP(R = 0.78) was seen, while such a trend was not observed in calcination time. The suggested structure in this study was 4:10:1 with Rall = 0.97, Rtest = 0.97, RMSE = 0.25, and MSE = 0.003. Furthermore, the CU rate increased with the rise in CT and calcination time. The maximum and minimum CU levels were related to NPs calcinated in 1000 °C-24 h and 350 °C-2 h, respectively. As a consequence, the most toxicity of SiO2 NPs was related to the crystalline NP. Therefore, the increase in CT and the calcination time were significant factors affecting on crystallization of SiO2 NPs, CP of lung cell, as well as CU of SiO2. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40201-021-00663-4.

19.
Environ Pollut ; 274: 116559, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33529892

RESUMEN

The study aimed to assess the effects of melatonin, a plant growth regulator, on the degradation of phenanthrene (Phe) and pyrene (Py), in the rhizosphere of the Festuca grass. The experiments were divided into the following groups: 1) soil contaminated with Phe and Py, without the Festuca, 2) contaminated soil + Festuca, 3-5), contaminated soil + Festuca + the application of melatonin in three separate doses: 10, 50, or 100 µM. After 90 days, the effects of melatonin supplementation on the degradation of polycyclic aromatic hydrocarbons (PAHs) were analyzed by evaluating the rate of PAHs degradation, the expression of genes encoding salicylaldehyde dehydrogenase (SDH) and glutathione peroxidase (GPX) enzymes in Pseudomonas putida, as well as by measuring the total activity of dehydrogenase and peroxidase enzymes. Our results have shown that in soil contaminated by 300 mg kg-1 PAHs, application of melatonin (10, 50, 100 µM), resulted in the following increase in the dehydrogenase and peroxidase activity in all three applied doses (19% and 5.7%), (45.3% and 34.3%), (40.9% and 14.3%), respectively in comparison to the control group. The experiment showed that soil supplementation with melatonin at 50 µM, resulted in the highest removal rate of PAHs. According to our results, melatonin demonstrated a potentially favorable role in enhancing plant biomass, as well as an increase in soil bacterial population, and the activity of antioxidative enzymes in P. putida, causing all tested parameters of the soil and the expression of desired genes to be advantageously altered for the degradation of the chosen PAHs.


Asunto(s)
Festuca , Melatonina , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/análisis , Rizosfera , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
20.
Chemosphere ; 246: 125845, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31918113

RESUMEN

Pyrene is one of the 16 group combinations of polyaromatic hydrocarbons, which are known as primary pollutants in the U.S. Environmental Protection Agency (USEPA) list. This study aimed to investigate the cross effect of different levels of landfill leachate on phytoremediation of pyrene-contaminated soil using the sorghum bicolor plant. The study parameters included the presence or absence of the plant, different concentrations of pyrene (150, 300, 500, 750, and 1000 mg kg-1), time (30, 60, and 90 days), and different levels of irrigation with leachate (0, 30, 50, 70, and 100%). Soil pyrene was measured every 30 days, and heavy metals (lead and cadmium) added to the soil by irrigation with leachate were measured in the soil and the plant at the end of 90 days. According to the results, pyrene removal efficiency after 90 days was 96% in irrigation treatments with 30% leachate in the presence of the plant and 67% in irrigation treatments with tap water in the presence of the plant. In addition, 95% of lead and 49% of cadmium added to the soil by irrigation with 30% leachate were extracted from the soil by the sorghum bicolor. According to the results, by increasing nutrients and number of soil bacteria during the cross treatment, landfill leachate increased the pyrene removal efficiency significantly during phytoremediation (p < 0.006) and the sorghum bicolor plant extracted the lead and cadmium of the leachate. In non-planting treatments, although adding high levels of leachate to the soil significantly improved the pyrene removal, it caused the levels of heavy metals, such as lead and cadmium, to exceed the allowable limit (p < 0.001).


Asunto(s)
Biodegradación Ambiental , Cadmio/metabolismo , Plomo/metabolismo , Metales Pesados/metabolismo , Pirenos/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Cadmio/análisis , Plomo/análisis , Metales Pesados/análisis , Pirenos/análisis , Suelo , Contaminantes del Suelo/análisis , Sorghum , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...