Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 37(35): 10490-10498, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34436900

RESUMEN

Typically, laterally patterned films are fabricated by lithographic techniques, external fields, or di-block copolymer self-assembly. We investigate the self-patterning of polyelectrolyte multilayers, poly(diallyldimethylammonium) (PDADMA)/poly(styrenesulfonate) (PSS)short. The low PSS molecular weight (Mw(PSSshort) = 10.7 kDa) is necessary because PSSshort is somewhat mobile within a PDADMA/PSSshort film, as demonstrated by the exponential growth regime at the beginning of the PDADMA/PSSshort multilayer build-up. No self-patterning was observed when the PDADMA/PSS film consisted of only immobile polyelectrolytes. Atomic force microscopy images show that self-patterning begins when the film consists of seven deposited PDADMA/PSSshort bilayers. When more bilayers are added, the surface ribbing evolved into bands, and circular domains were finally observed. The mean distance between the surface structures increased monotonously with the film thickness, from 70 to 250 nm. Scanning electron microscopy images showed that exposure to vacuum resulted in thinning of the film and an increase in the mean distance between domains. The effect is weaker for PSSshort-terminated films than for PDADMA-terminated films. The mechanism leading to domain formation during film build-up and the effect of post-preparation treatment are discussed.

2.
Biophys J ; 120(15): 3103-3111, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34197799

RESUMEN

Lipid rafts are discrete, heterogeneous domains of phospholipids, sphingolipids, and sterols that are present in the cell membrane. They are responsible for conducting cell signaling and maintaining lipid-protein functionality. Redox-stress-induced modifications to any of their components can severely alter the mechanics and dynamics of the membrane causing impairment to the lipid-protein functionality. Here, we report on the effect of sphingomyelin (SM) in controlling membrane permeability and its role as a regulatory lipid in the presence of nitric oxide (NO). Force spectroscopy and atomic force microscopy imaging of raft-like phases (referring here to the coexistence of "liquid-ordered" and "liquid-disordered" phases in model bilayer membranes) prepared from lipids: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC):SM:cholesterol (CH) (at three ratios) showed that the adhesion forces to pull the tip out of the membrane increased with increasing SM concentration, indicating decreased membrane permeability. However, in the presence of NO radical (1 and 5 µM), the adhesion forces decreased depending on SM concentration. The membrane was found to be stable at the ratio POPC:SM:CH (2:1:1) even when exposed to 1 µM NO. We believe that this is a critical ratio needed by the raft-like phases to maintain homeostasis under stress conditions. The stability could be due to an interplay existing between SM and CH. However, at 5 µM NO, membrane deteriorations were detected. For POPC:SM:CH (2:2:1) ratio, NO displayed a pro-oxidant behavior and damaged the membrane at both radical concentrations. These changes were reflected by the differences in the height profiles of the raft-like phases observed by atomic force microscopy imaging. Malondialdehyde (a peroxidation product) detection suggests that lipids may have undergone lipid nitroxidation. The changes were instantaneous and independent of radical concentration and incubation time. Our study underlines the need for identifying appropriate ratios in the lipid rafts of the cell membranes to withstand redox imbalances caused by radicals such as NO.


Asunto(s)
Óxido Nítrico , Esfingomielinas , Membrana Celular , Colesterol , Membrana Dobles de Lípidos , Microdominios de Membrana , Fosfatidilcolinas
3.
Biomolecules ; 11(2)2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-33668553

RESUMEN

In the eye lens cell membrane, the lipid composition changes during the aging process: the proportion of sphingomyelins (SM) increases, that of phosphatidylcholines decreases. To investigate the protective role of the SMs in the lens cell membrane against oxidative damage, analytical techniques such as electrochemistry, high-resolution mass spectrometry (HR-MS), and atomic force microscopy (AFM) were applied. Supported lipid bilayers (SLB) were prepared to mimic the lens cell membrane with different fractions of PLPC/SM (PLPC: 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine). The SLBs were treated with cold physical plasma. A protective effect of 30% and 44% in the presence of 25%, and 75% SM in the bilayer was observed, respectively. PLPC and SM oxidation products were determined via HR-MS for SLBs after plasma treatment. The yield of fragments gradually decreased as the SM ratio increased. Topographic images obtained by AFM of PLPC-bilayers showed SLB degradation and pore formation after plasma treatment, no degradation was observed in PLPC/SM bilayers. The results of all techniques confirm the protective role of SM in the membrane against oxidative damage and support the idea that the SM content in lens cell membrane is increased during aging in the absence of effective antioxidant systems to protect the eye from oxidative damage and to prolong lens transparency.


Asunto(s)
Cristalino/metabolismo , Estrés Oxidativo/fisiología , Esfingomielinas/fisiología , Membrana Dobles de Lípidos , Espectrometría de Masas/métodos , Microscopía de Fuerza Atómica , Gases em Plasma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...