Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 656: 124037, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38522489

RESUMEN

Interest in 3D printing has been growing rapidly especially in pharmaceutical industry due to its multiple advantages such as manufacturing versatility, personalization of medicine, scalability, and cost effectiveness. Inkjet based 3D printing gained special attention after FDA's approval of Spritam® manufactured by Aprecia pharmaceuticals in 2015. The precision and printing efficiency of 3D printing is strongly influenced by the dynamics of ink/binder jetting, which further depends on the ink's fluid properties. In this study, Computational Fluid Dynamics (CFD) has been utilized to study the drop formation process during inkjet-based 3D printing for piezoelectric and thermal printhead geometries using Volume of Fluid (VOF) method. To develop the CFD model commercial software ANSYS-Fluent was used. The developed CFD model was experimentally validated using drop watcher setup to record drop progression and drop velocity. During the study, water, Fujifilm model fluid, and Amitriptyline drug solutions were evaluated as the ink solutions. The drop properties such as drop volume, drop diameter, and drop velocity were examined in detail in response to change ink solution properties such as surface tension, viscosity, and density. A good agreement was observed between the experimental and simulation data for drop properties such as drop volume and drop velocity.


Asunto(s)
Hidrodinámica , Tinta , Impresión Tridimensional , Comprimidos , Tecnología Farmacéutica , Viscosidad , Tecnología Farmacéutica/métodos , Amitriptilina/química , Simulación por Computador , Tensión Superficial
2.
Pharm Res ; 39(9): 1991-2003, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35986121

RESUMEN

Fluidized bed dryer often used in the pharmaceutical industry for drying of wet granules. Coupled computational fluid dynamics (CFD) - discrete element method (DEM) is frequently used to model the drying process because of its ability to obtain the relevant information at the particle level. However, it becomes almost impossible to model the industrial scale fluidized bed dryer using the coupled CFD-DEM method because of the presence of large number of particles [Formula: see text]. To reduce the number of particles to be tracked in the simulation, coarse grained coupled CFD-DEM method was developed by researchers where a certain number of particles of the original system was represented by a relatively bigger particle in the coarse-grained system. The appropriate scaling of the particle-particle and particle-fluid interaction forces is necessary to make sure that the dynamics of the coarse-grained particles/parcels accurately represent the dynamics of the original particles. The coarse-graining of the drying process of pharmaceutical granules during fluidization needs systematic coarse-graining of the momentum, heat, and solvent vapor transfer process. A coarse grained coupled CFD-DEM method was used to model the momentum and heat transfer during the fluidization of pharmaceutical granules. It was shown that the heat transfer during the fluidization of large number of particles could be predicted by simulating a smaller number of bigger particles with appropriate scaling of particle-particle heat and momentum transfer, and particle-fluid heat and momentum transfer at significantly smaller computational time. This model can be further extended by including a coarse-grained moisture transport model in future.


Asunto(s)
Calor , Hidrodinámica , Tamaño de la Partícula , Preparaciones Farmacéuticas , Solventes
3.
AAPS PharmSciTech ; 23(1): 59, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35059893

RESUMEN

Drying of wet granules in a fluidized bed dryer is an important part of the pharmaceutical tablet manufacturing process. Complicated gas-solid flow patterns appear in the fluidized bed dryer, and interphase momentum, heat, and mass transfer happen during the drying process. A coupled computational fluid dynamics (CFD)-discrete element method (DEM)-based approach was used to model the drying process of pharmaceutical wet granules in a fluidized bed dryer. The evaporation of water from the surfaces of the particles and the cohesion force between the particles due to the formation of liquid bridges between the particles were also considered in this model. The model was validated by comparing the model predictions with the experimental data available from the literatures. The validated model was used to investigate the drying kinetics of the wet granules in the fluidized bed dryer. The results from numerical simulations showed that the dynamics and rate of increase of temperature of wet particles were considerably different from those of dry particles. Finally, the model was used to investigate the effects of inlet air velocity and inlet air temperature on the drying process. The model predicted increase in drying rate with the increase of inlet air velocity and inlet air temperature. This model can help not only to understand the multiphase multicomponent flow in fluidized bed dryer but also to optimize the drying process in the fluidized bed dryer.


Asunto(s)
Desecación , Hidrodinámica , Simulación por Computador , Comprimidos , Temperatura
4.
J Pharm Sci ; 111(4): 1110-1125, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34555391

RESUMEN

The fluidized bed is an essential and standard equipment in the field of process development. It has a wide application in various areas and has been extensively studied. This review paper aims to discuss computational modeling of a fluidized bed with a focus on pharmaceutical applications. Eulerian, Lagrangian, and combined Eulerian-Lagrangian models have been studied for fluid bed applications with the rise of modeling capabilities. Such models assist in optimizing the process parameters and expedite the process development cycle. This paper discusses the background of modeling and then summarizes research papers relevant to pharmaceutical unit operations.


Asunto(s)
Simulación por Computador , Preparaciones Farmacéuticas
5.
Soft Matter ; 15(35): 6967-6977, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31432863

RESUMEN

This paper presents a detailed investigation on the mechanical forces acting on a liquid bridge between dissimilar fibers in parallel and orthogonal configurations. These forces were measured experimentally, using a sensitive scale, and were also predicted computationally, via numerical simulation. Special attention was paid to the fiber-fiber spacing at which the liquid bridge detached from the fibers, and to how a transition from an equilibrium liquid bridge to a spontaneously (time-dependent) detaching bridge took place. It was found that, while varying the spacing between the fibers affects a liquid bridge differently for fibers with different relative angles with respect to one another, the spacing at which the bridge detaches from the fibers is independent of the fibers' relative angle. This paper also formulates the contribution of the geometrical and wetting properties of the fibers competing for the droplet that results from a liquid bridge detachment, and presents a mathematical expression to predict the fate of that droplet.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...