Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Eng Phys ; 46: 71-78, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28645850

RESUMEN

Acetabular fractures potentially account for up to half of all pelvic fractures, while pelvic fractures potentially account for over one-tenth of all human bone fractures. This is the first biomechanical study to assess acetabular fracture fixation using plates versus cables in the presence of a total hip arthroplasty, as done for the elderly. In Phase 1, finite element (FE) models compared a standard plate method versus 3 cable methods for repairing an acetabular fracture (type: anterior column plus posterior hemi-transverse) subjected to a physiological-type compressive load of 2207N representing 3 x body weight for a 75kg person during walking. FE stress maps were compared to choose the most mechanically stable cable method, i.e. lowest peak bone stress. In Phase 2, mechanical tests were then done in artificial hemipelvises to compare the standard plate method versus the optimal cable method selected from Phase 1. FE analysis results showed peak bone stresses of 255MPa (Plate method), 205MPa (Mears cable method), 250MPa (Kang cable method), and 181MPa (Mouhsine cable method). Mechanical tests then showed that the Plate method versus the Mouhsine cable method selected from Phase 1 had higher stiffness (662versus 385N/mm, p=0.001), strength (3210versus 2060N, p=0.009), and failure energy (8.8versus 6.2J, p=0.002), whilst they were statistically equivalent for interfragmentary sliding (p≥0.179) and interfragmentary gapping (p≥0.08). The Plate method had superior mechanical properties, but the Mouhsine cable method may be a reasonable alternative if osteoporosis prevents good screw thread interdigitation during plating.


Asunto(s)
Acetábulo/lesiones , Artroplastia de Reemplazo de Cadera , Análisis de Elementos Finitos , Fijación Interna de Fracturas/instrumentación , Fracturas Óseas/cirugía , Fenómenos Mecánicos , Acetábulo/cirugía , Fenómenos Biomecánicos , Fijación Interna de Fracturas/normas , Ensayo de Materiales , Estándares de Referencia , Estrés Mecánico
2.
Med Eng Phys ; 39: 23-30, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27816389

RESUMEN

Conservative hip implants preserve healthy bone for revision surgeries and improve physiological loading; however, they have little supporting biomechanical data with respect to their 3D orientation during implantation. This study endeavored to determine the optimal 3D orientation of a straight short stem hip implant within the proximal femur that would yield a stress distribution most similar to an intact femur. Synthetic femurs were implanted with a stem in one of seven maximum angles or positions and axially loaded, with resultant strain values used to validate a finite element model. Design of experiments was used to analyze the range of potential implant orientations under three gait cycle loading conditions. A global optimal orientation of 9.14° valgus, 2.49° anteversion, 0.48mm posterior position, and 0.23mm inferior position was found to yield stress distributions most similar to the intact femur across the gait cycle range. In general, it was determined that the valgus orientation was optimal throughout the gait cycle, consistently exhibiting a stress distribution more similar to that of the intact femur. Minimal levels of anterior/posterior and inferior positioning were seen to be beneficial in achieving more physiological stresses in specific regions of interest within the proximal femur, while the anteverted orientation was only beneficial in loading under flexion. Overall, orthopaedic surgeons should aim to implant straight short stem hip implants in valgus up to 10°, with an otherwise neutral position and version, unless some degree of deviation would be beneficial for a patient-specific reason. This work has implications for the best surgical placement of straight short stem hip implants to yield maximal biomechanical stability.


Asunto(s)
Prótesis de Cadera , Fenómenos Mecánicos , Fenómenos Biomecánicos , Fémur/cirugía , Análisis de Elementos Finitos , Humanos , Estrés Mecánico
3.
BMC Complement Altern Med ; 16(1): 325, 2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27577059

RESUMEN

BACKGROUND: Virus-induced dendritic cells (DCs) functional deficiency leads to sub-optimal initiation of adaptive immune responses and consequently chronic infection establishment. The present study reports an advanced hepatitis C virus (HCV) therapeutic vaccine model based on In vivo enrichment of DCs with barberry ethanolic crude extract (BCE) then pulsing them with HCV core protein. METHODS: DCs were enriched by BCE intravenous injection in BALB/c mice. Vaccine efficiency was assessed by flow cytometric analysis of splenocytes of immunized mice, cytokine profiling, cytotoxic T lymphocyte assay, and humoral immune response assessment. RESULTS: There was no significant difference in surface phenotypic characterization of splenocytes from mice immunized with non-BCE-enriched-core-pulsed DCs (iDcs-core) compared to those from mice injected with RPMI-1640 medium. However, splenocytes from mice immunized with BCE-enriched-core-pulsed DCs showed 197 % increase in CD16+ population, 33 % increase in MHCII(+) population, and 43 % decrease in CD3(+) population. In iDCs-core group, 57.9 % greater anti-core cytotoxic T lymphocyte activity, up-regulation in interferon gamma and interleukin (IL) -12 expression, and down-regulation in IL-4 and IL-10 were recorded. Moreover, sustained specific anti-core antibodies were detected only in sera of the same group. CONCLUSIONS: results indicate that BCE-enriched-core-transduced DCs may serve as a new model for immunotherapy of HCV chronic infection.


Asunto(s)
Berberis/química , Inmunidad Humoral/efectos de los fármacos , Factores Inmunológicos/farmacología , Extractos Vegetales/farmacología , Vacunas contra Hepatitis Viral/inmunología , Animales , Anticuerpos Antivirales/sangre , Citocinas/análisis , Citocinas/metabolismo , Células Dendríticas/inmunología , Femenino , Inmunoglobulina G/sangre , Factores Inmunológicos/química , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/química , Vacunas contra Hepatitis Viral/química
4.
Med Eng Phys ; 38(3): 232-40, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26774671

RESUMEN

Short-stem hip implants are increasingly common since they preserve host bone stock and presumably reduce stress shielding by improving load distribution in the proximal femur. Stress shielding may lead to decreased bone density, implant loosening, and fracture. However, few biomechanical studies have examined short-stem hip implants. The purpose of this study was to compare short-stem vs. standard length stemmed implants for stress shielding effects due to anteversion-retroversion, anterior-posterior position, and modular neck offset. Twelve artificial femurs were implanted with either a short-stem modular-neck implant or a conventional length monolithic implant in 0° or 15° of anteversion. Three modular neck options were tested in the short-stem implants. Three control femurs remained intact. Femurs were mounted in adduction and subjected to axial loading. Strain gauge values were collected to validate a Finite Element (FE) model, which was used to simulate the full range of physiologically possible anteversion and anterior-posterior combinations (n = 25 combinations per implant). Calcar stress was compared between implants and across each implant's range of anteversion using one and two-way ANOVA. Stress shielding was defined as the overall change in stress compared to an intact femur. The FE model compared well with experimental strains (intact: slope = 0.898, R = 0.943; short-stem: slope = 0.731, R = 0.948; standard-stem: slope = 0.743, R = 0.859); correction factors were used to adjust slopes to unity. No implant anteversion showed significant reduction in stress shielding (α = 0.05, p > 0.05). Stress shielding was significantly higher in the standard-stem implant (63% change from intact femur, p < 0.001) than in short-stem implants (29-39% change, p < 0.001). Short-stem implants reduce stress shielding compared to standard length stemmed implants, while implant anteversion and anterior-posterior position had no effect. Therefore, short-stem implants have a greater likelihood of maintaining calcar bone strength in the long term.


Asunto(s)
Prótesis de Cadera , Estrés Mecánico , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Diseño de Prótesis , Factores de Tiempo , Soporte de Peso
5.
J Biomech Eng ; 136(9): 091002, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24828985

RESUMEN

Femur fracture at the tip of a total hip replacement (THR), commonly known as Vancouver B1 fracture, is mainly treated using rigid metallic bone plates which may result in "stress shielding" leading to bone resorption and implant loosening. To minimize stress shielding, a new carbon fiber (CF)/Flax/Epoxy composite plate has been developed and biomechanically compared to a standard clinical metal plate. For fatigue tests, experiments were done using six artificial femurs cyclically loaded through the femoral head in axial compression for four stages: Stage 1 (intact), stage 2 (after THR insertion), stage 3 (after plate fixation of a simulated Vancouver B1 femoral midshaft fracture gap), and stage 4 (after fracture gap healing). For fracture fixation, one group was fitted with the new CF/Flax/Epoxy plate (n = 3), whereas another group was repaired with a standard clinical metal plate (Zimmer, Warsaw, IN) (n = 3). In addition to axial stiffness measurements, infrared thermography technique was used to capture the femur and plate surface stresses during the testing. Moreover, finite element analysis (FEA) was performed to evaluate the composite plate's axial stiffness and surface stress field. Experimental results showed that the CF/Flax/Epoxy plated femur had comparable axial stiffness (fractured = 645 ± 67 N/mm; healed = 1731 ± 109 N/mm) to the metal-plated femur (fractured = 658 ± 69 N/mm; healed = 1751 ± 39 N/mm) (p = 1.00). However, the bone beneath the CF/Flax/Epoxy plate was the only area that had a significantly higher average surface stress (fractured = 2.10 ± 0.66 MPa; healed = 1.89 ± 0.39 MPa) compared to bone beneath the metal plate (fractured = 1.18 ± 0.93 MPa; healed = 0.71 ± 0.24 MPa) (p < 0.05). FEA bone surface stresses yielded peak of 13 MPa at distal epiphysis (stage 1), 16 MPa at distal epiphysis (stage 2), 85 MPa for composite and 129 MPa for metal-plated femurs at the vicinity of nearest screw just proximal to fracture (stage 3), 21 MPa for composite and 24 MPa for metal-plated femurs at the vicinity of screw farthest away distally from fracture (stage 4). These results confirm that the new CF/Flax/Epoxy material could be a potential candidate for bone fracture plate applications as it can simultaneously provide similar mechanical stiffness and lower stress shielding (i.e., higher bone stress) compared to a standard clinical metal bone plate.


Asunto(s)
Placas Óseas , Carbono/química , Compuestos Epoxi/química , Fracturas Óseas/cirugía , Ensayo de Materiales , Metales , Estrés Mecánico , Adulto , Fenómenos Biomecánicos , Fibra de Carbono , Fémur/lesiones , Análisis de Elementos Finitos , Humanos
6.
J Biomech Eng ; 136(5): 051006, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24598846

RESUMEN

The human humerus is the third largest longbone and experiences 2-3% of all fractures. Yet, almost no data exist on its intact biomechanical properties, thus preventing researchers from obtaining a full understanding of humerus behavior during injury and after being repaired with fracture plates and nails. The aim of this experimental study was to compare the biomechanical stiffness and strength of "gold standard" fresh-frozen humeri to a variety of humerus models. A series of five types of intact whole humeri were obtained: human fresh-frozen (n = 19); human embalmed (n = 18); human dried (n = 15); artificial "normal" (n = 12); and artificial "osteoporotic" (n = 12). Humeri were tested under "real world" clinical loading modes for shear stiffness, torsional stiffness, cantilever bending stiffness, and cantilever bending strength. After removing geometric effects, fresh-frozen results were 585.8 ± 181.5 N/mm2 (normalized shear stiffness); 3.1 ± 1.1 N/(mm2 deg) (normalized torsional stiffness); 850.8 ± 347.9 N/mm2 (normalized cantilever stiffness); and 8.3 ± 2.7 N/mm2 (normalized cantilever strength). Compared to fresh-frozen values, statistical equivalence (p ≥ 0.05) was obtained for all four test modes (embalmed humeri), 1 of 4 test modes (dried humeri), 1 of 4 test modes (artificial "normal" humeri), and 1 of 4 test modes (artificial "osteoporotic" humeri). Age and bone mineral density versus experimental results had Pearson linear correlations ranging from R = -0.57 to 0.80. About 77% of human humeri failed via a transverse or oblique distal shaft fracture, whilst 88% of artificial humeri failed with a mixed transverse + oblique fracture. To date, this is the most comprehensive study on the biomechanics of intact human and artificial humeri and can assist researchers to choose an alternate humerus model that can substitute for fresh-frozen humeri.


Asunto(s)
Materiales Biomiméticos , Húmero , Ensayo de Materiales , Fenómenos Mecánicos , Adulto , Fenómenos Biomecánicos , Densidad Ósea , Criopreservación , Desecación , Humanos , Fracturas del Húmero/fisiopatología , Húmero/fisiología , Húmero/fisiopatología , Estrés Mecánico
7.
J Mech Behav Biomed Mater ; 30: 159-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24295967

RESUMEN

Humerus shaft fracture fixation is largely dependent on cortical screw purchase in host bone. Only 2 prior studies assessed cortical screw purchase in human humeral shafts, but were of very limited scope and did not fully assess humerus material properties. Also, no studies evaluated the human dried or artificial humeri both commercially available from Sawbones. Vashon, WA, USA. Therefore, present authors measured cortical screw purchase in human fresh-frozen (FF) (n=19), human embalmed (EM) (n=18), human dried (DR) (n=14), artificial "normal" (AN) (n=13), and artificial "osteoporotic" (AO) (n=13) humeri. Each humerus had 2 bicortical screws of 3.5-mm diameter inserted 20mm apart through the shaft's anterior and posterior cortices. Absolute force, displacement, and energy for screw-bone interface failure were measured by screw pullout tests, afterwhich data were normalized by total surface area engaged at the screw-bone interface. For absolute force, AN humeri reached a higher load than EM (p=0.001) and AO (p<0.001) humeri, whilst AN humeri achieved lower normalized force than DR humeri (p=0.018). For absolute displacement, AO humeri achieved a lower level than FF humeri (p=0.013), whilst for normalized displacement AN humeri had lower levels than all other groups (p≤0.005) and AO humeri had lower values than EM humeri (p=0.029). For absolute and normalized energy, there were no statistical differences (p≥0.066). Human bone mineral density (BMD) ranged from 0.7 to 1.8g/cm(2) and was linearly correlated to screw pullout parameters in 14 of 18 cases (R=0.61 to 0.96), whilst humerus age was not. Consequently, it is recommended that human fresh-frozen, human embalmed, and human dried humeri can be used interchangeably for cortical screw purchase, since they were statistically equivalent for all comparisons. However, artificial humeri were involved in all statistical differences observed and, thus, may not replicate cortical screw purchase in human humeri. To date, this is the most comprehensive study on cortical screw purchase in human and artificial humeral shafts.


Asunto(s)
Tornillos Óseos , Húmero , Ensayo de Materiales , Fenómenos Mecánicos , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Densidad Ósea , Femenino , Fijación Interna de Fracturas , Humanos , Fracturas del Húmero/fisiopatología , Fracturas del Húmero/cirugía , Húmero/lesiones , Húmero/fisiopatología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...