Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci ; 325: 121569, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36907328

RESUMEN

AIMS: Without any doubt, vaccination was the best choice for Coronavirus disease 2019 (COVID-19) pandemic control. According to the American Society of Clinical Oncology (ASCO) and European Society for Medical Oncology (ESMO), people with cancer or a history of cancer have a higher risk of dying from Covid-19 than ordinary people; hence, they should be considered a high-priority group for vaccination. On the other hand, the effect of the Covid-19 vaccination on cancer is not transparent enough. This study is one of the first in vivo studies that try to show the impact of Sinopharm (S) and AstraZeneca (A) vaccines on breast cancer, the most common cancer among women worldwide. MATERIALS AND METHODS: Vaccination was performed with one and two doses of Sinopharm (S1/S2) or AstraZeneca (A1/A2) on the 4T1 triple-negative breast cancer (TNBC) mice model. The tumor size and body weight of mice were monitored every two days. After one month, mice were euthanized, and the existence of Tumor-infiltrating lymphocytes (TILs) and expression of the important markers in the tumor site was assessed. Metastasis in the vital organs was also investigated. KEY FINDINGS: Strikingly, all of the vaccinated mice showed a decrease in tumor size and this decrease was highest after two vaccinations. Moreover, we observed more TILs in the tumor after vaccination. Vaccinated mice demonstrated a decrease in the expression of tumor markers (VEGF, Ki-67, MMP-2/9), CD4/CD8 ratio, and metastasis to the vital organs. SIGNIFICANCE: Our results strongly suggest that COVID-19 vaccinations decrease tumor growth and metastasis.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Femenino , Animales , Ratones , Vacunas contra la COVID-19 , COVID-19/prevención & control , Relación CD4-CD8 , Biomarcadores de Tumor , Vacunación
2.
Int J Biol Macromol ; 49(4): 652-6, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21741990

RESUMEN

The stability of enzymes with no reduction in their catalytic activity still remains a critical issue in industrial applications. Naturally occurring osmolytes are commonly used as protein stabilizers. In this study we have investigated the effects of sorbitol and trehalose on the structural stability and activity of Pseudomonas cepacia lipase (PCL), using UV-visible, circular dichroism (CD) and fluorescence spectroscopy. Surface plasmon resonance (SPR) technique was used to trace changes in the refractive index and dielectric constant of the environment. The results revealed that catalytic activity and intrinsic fluorescence intensity of PCL increased in the presence of both osmolytes. Far-UV CD spectra indicated that the protein has undergone some conformational changes upon interacting with these osmolytes. Increasing the concentration of sorbitol led to changes in the refractive index and consequently the dielectric constant of environment; whereas in the case of trehalose, such changes were not significant. Unfavorable interactions of trehalose with protein surface induced higher preferential exclusion from the enzyme-water interface than that of sorbitol. Results of this report could give further insights about the stabilization mechanism of osmolytes.


Asunto(s)
Burkholderia cepacia/enzimología , Lipasa/química , Lipasa/metabolismo , Sorbitol/farmacología , Trehalosa/farmacología , Dicroismo Circular , Oro/química , Hidrólisis/efectos de los fármacos , Nanopartículas del Metal/química , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA