Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39272826

RESUMEN

Children with cancer previously treated with radiotherapy face the likelihood of side effects that can be debilitating or fatal. This study aimed to assess the long-term effect of medulloblastoma radiotherapy on the DNA double-strand break (DSB) repair capability of primary fibroblasts derived from lung biopsies of previously irradiated young sheep. This study included biopsies from three control and five irradiated sheep. The treated sheep had previously received spinal radiotherapy at a total dose of 28 Gy, which is equivalent to pediatric medulloblastoma treatment. Lung biopsies were taken 4 years post-irradiation from high-dose (HD, >18 Gy) and low-dose (LD, <2 Gy) regions. Fifteen cell lines were extracted (six control, four LD and five HD). The cells were irradiated, and DNA DSB repair was analyzed by immunofluorescence. Clonogenic, trypan blue and micronuclei assays were performed. Both the HD and LD cell lines had a significantly higher number of residual γH2AX foci 24 h and a significant decrease in pATM activity post-irradiation compared to the control. There was no statistically significant difference in the clonogenic assay, trypan blue and micronuclei results. Our study showed that a previous irradiation can impair the DNA DSB repair mechanism of ovine lung fibroblasts.

2.
Pharmacol Rep ; 76(1): 171-184, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38151641

RESUMEN

BACKGROUND: Early-stage breast cancer is usually treated with breast-conserving surgery followed by adjuvant radiation therapy. Acute skin toxicity is a common radiation-induced side effect experienced by many patients. Recently, a combination of bisphosphonates (zoledronic acid) and statins (pravastatin), or ZOPRA, was shown to radio-protect normal tissues by enhancing DNA double-strand breaks (DSB) repair mechanism. However, there are no studies assessing the effect of ZOPRA on cancerous cells. The purpose of this study is to characterize the in vitro effect of the zoledronic acid (ZO), pravastatin (PRA), and ZOPRA treatment on the molecular and cellular radiosensitivity of breast cancer cell lines. MATERIALS: Two breast cancer cell lines, MDA MB 231 and MCF-7, were tested. Cells were treated with different concentrations of pravastatin (PRA), zoledronate (ZO), as well as their ZOPRA combination, before irradiation. Anti-γH2AX and anti-pATM immunofluorescence were performed to study DNA DSB repair kinetics. MTT assay was performed to assess cell proliferation and viability, and flow cytometry was performed to analyze the effect of the drugs on the cell cycle distribution. The clonogenic assay was used to assess cell survival. RESULTS: ZO, PRA, and ZOPRA treatments were shown to increase the residual number of γH2AX foci for both cell lines. ZOPRA treatment was also shown to reduce the activity of the ATM kinase in MCF-7. ZOPRA induced a significant decrease in cell survival for both cell lines. CONCLUSIONS: Our findings show that pretreatment with ZOPRA can decrease the radioresistance of breast cancer cells at the molecular and cellular levels. The fact that ZOPRA was previously shown to radioprotect normal tissues, makes it a good candidate to become a therapeutic window-widening drug.


Asunto(s)
Neoplasias de la Mama , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Femenino , Células MCF-7 , Reparación del ADN , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/radioterapia , Difosfonatos/farmacología , Ácido Zoledrónico/farmacología , Pravastatina/farmacología , Tolerancia a Radiación/efectos de la radiación , ADN , Línea Celular Tumoral
3.
J Med Chem ; 66(7): 4565-4587, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36921275

RESUMEN

Structural modifications of the antibacterial drug nitrofurantoin were envisioned, employing drug repurposing and biology-oriented drug synthesis, to serve as possible anticancer agents. Eleven compounds showed superior safety in non-cancerous human cells. Their antitumor efficacy was assessed on colorectal, breast, cervical, and liver cancer cells. Three compounds induced oxidative DNA damage in cancer cells with subsequent cellular apoptosis. They also upregulated the expression of Bax while downregulated that of Bcl-2 along with activating caspase 3/7. The DNA damage induced by these compounds, demonstrated by pATM nuclear shuttling, was comparable in both MCF7 and MDA-MB-231 (p53 mutant) cell lines. Mechanistic studies confirmed the dependence of these compounds on p53-mediated pathways as they suppressed the p53-MDM2 interaction. Indeed, exposure of radiosensitive prostatic cancer cells to low non-cytotoxic concentrations of compound 1 enhanced the cytotoxic response to radiation indicating a possible synergistic effect. In vivo antitumor activity was verified in an MCF7-xenograft animal model.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Animales , Humanos , Femenino , Nitrofurantoína/farmacología , Proteína p53 Supresora de Tumor/genética , Reposicionamiento de Medicamentos , Proliferación Celular , Apoptosis , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Biología , Línea Celular Tumoral
4.
Nutr Cancer ; 74(6): 2207-2221, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34643466

RESUMEN

Chemo-radiotherapy is one of the promising approaches to treat bladder cancer, but its effectiveness is limited to sensitive patients. Polyphenol curcumin has shown anticancer and radiosensitizing potentials, but the mechanism is not fully understood. Here, the In Vitro response of UM-UC5 and UM-UC6 bladder cell lines to curcumin and radiation treatments was evaluated. The effect of curcumin on the DNA double-strand breaks repair system after treatment with ionizing radiation (2 Gy) was determined by immunofluorescence. Cell viability, proliferation, and survival were performed using trypan blue, MTT, clonogenic, and sphere-forming assays. The migratory ability of both cells was assessed by wound healing. We showed that curcumin treatment increased the radiosensitivity by modifying the DNA double-strand breaks repair kinetics of the most radioresistant cells UM-UC6 without affecting the radiosensitive UM-UC5. Moreover, UM-UC6 cell survival and proliferation was significantly decreased after the combination of curcumin with radiation. Bladder cell migration was also inhibited considerably. Curcumin was also shown to reduce the number and the volume of bladder cancer spheres of both cell lines. This study revealed that curcumin was able to radiosensitize resistant bladder cell line without affecting the sensitive one with minimal side effects through enhancing DNA damage signaling and repair pathway.


Asunto(s)
Curcumina , Fármacos Sensibilizantes a Radiaciones , Neoplasias de la Vejiga Urinaria , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Curcumina/farmacología , ADN/genética , ADN/farmacología , ADN/efectos de la radiación , Daño del ADN , Reparación del ADN , Humanos , Fármacos Sensibilizantes a Radiaciones/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
5.
Food Chem ; 255: 399-404, 2018 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-29571492

RESUMEN

Nerolidol, a naturally occurring sesquiterpene with antimicrobial activities, is a promising candidate as a natural alternative for synthetic preservatives in food. However, its application is limited by low aqueous solubility and stability. In this study, conventional liposomes and drug-in-cyclodextrin-in-liposomes (DCLs) were evaluated for the first time as encapsulating materials for nerolidol. The size, encapsulation efficiency (EE%), loading rate (LR%), photo- and storage stabilities of both systems were characterized. Moreover, the in vitro release of nerolidol from liposomes and DCLs was investigated over time. Nerolidol was efficiently entrapped in both carriers with high EE% and LR% values. In addition, DCLs prolonged the release of nerolidol over one week and enhanced the photostability more effectively than conventional liposomes. Finally, all formulations were stable after 12 months of storage at 4 °C (>60% incorporated nerolidol). Therefore, DCLs are promising carriers for new applications of sesquiterpenes in the pharmaceutical and food industries.


Asunto(s)
Ciclodextrinas/química , Composición de Medicamentos , Liposomas/química , Sesquiterpenos/química , Solubilidad
6.
Beilstein J Org Chem ; 13: 835-844, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28546841

RESUMEN

Nerolidol (Ner), a major component of many plant essential oils, is known for its various biological properties. However, the low solubility of Ner in water and its susceptibility to degradation limit its application. The aim of our study was to improve the solubility and photostability of Ner through its encapsulation in different cyclodextrins (CDs). The formation constants of cis-, trans-Ner and their commercial mixture with various CDs (α-CD, ß-CD, γ-CD, HP-ß-CD, RAMEB, CRYSMEB and SBE-ß-CD) were determined by phase solubility studies and confirmed by the spectral displacement UV-visible method. The solubility of cabreuva essential oil (EO) rich in trans-Ner was also evaluated by total organic carbon (TOC) analysis. The encapsulation efficiency (EE %) of Ner in HP-ß-CD solid complexes was assessed by HPLC. The structural characterization of CD/trans-Ner inclusion complex was then conducted by NMR spectroscopy followed by molecular modelling studies. The effect of encapsulation on the Ner photostability was also carried out over time under UVB irradiation. AL-type phase-solubility diagrams were obtained, suggesting the formation of 1:1 CD/Ner inclusion complexes. The solubility of Ner was enhanced by approximately 70-fold in the presence of 10 mM HP-ß-CD. Moreover, high EE % values were obtained for 5:1 and 10:1 HP-ß-CD:Ner molar ratios. NMR and molecular modelling studies revealed the most stable structure for trans-Ner inside the CD cavity with the OH group oriented towards the wider rim of the CD. Finally, CD encapsulation of Ner as pure compound or as main component of the cabreuva EO, protected it from degradation. This effect was more pronounced as the concentration of CD increased. These findings suggested that CDs are promising encapsulating carriers for Ner by enhancing its solubility and stability and thereby its application in food industry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA