Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 3648, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871094

RESUMEN

Living myocardial slices (LMS) are beating sections of intact human myocardium that maintain 3D microarchitecture and multicellularity, thereby overcoming most limitations of conventional myocardial cell cultures. We introduce a novel method to produce LMS from human atria and apply pacing modalities to bridge the gap between in-vitro and in-vivo atrial arrhythmia studies. Human atrial biopsies from 15 patients undergoing cardiac surgery were dissected to tissue blocks of ~ 1 cm2 and cut to 300 µm thin LMS with a precision-cutting vibratome. LMS were placed in a biomimetic cultivation chamber, filled with standard cell culture medium, under diastolic preload (1 mN) and continuous electrical stimulation (1000 ms cycle length (CL)), resulting in 68 beating LMS. Atrial LMS refractory period was determined at 192 ± 26 ms. Fixed rate pacing with a CL of 333 ms was applied as atrial tachyarrhythmia (AT) model. This novel state-of-the-art platform for AT research can be used to investigate arrhythmia mechanisms and test novel therapies.


Asunto(s)
Fibrilación Atrial , Humanos , Biomimética , Proyectos de Investigación , Miocardio , Miocitos Cardíacos
2.
J Clin Med ; 11(13)2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35807162

RESUMEN

Molecular mechanisms behind obesity and sex-related effects in adipose tissue remain elusive. During adipocyte expansion, adipocytes undergo drastic remodelling of lipid membrane compositions. Lipid flippases catalyse phospholipid translocation from exoplasmic to the cytoplasmic leaflet of membranes. The present study aimed to analyse the effect of sex, obesity, and their interactions on the gene expression of two lipid flippases-ATP8A1 and ATP8B1-and their possible microRNA (miR) modulators in visceral adipose tissue (VAT). In total, 12 normal-weight subjects (5 premenopausal women and 7 men) and 13 morbidly obese patients (7 premenopausal women and 6 men) were submitted to surgery, and VAT samples were obtained. Gene expression levels of ATP8A1, ATP8B1, miR-548b-5p, and miR-4643 were measured in VAT. Our results showed a marked influence of obesity on VAT ATP8A1 and ATP8B1, although the effects of obesity were stronger in men for ATP8A1. Both genes positively correlated with obesity and metabolic markers. Furthermore, ATP8B1 was positively associated with miR-548b-5p and negatively associated with miR-4643. Both miRs were also affected by sex. Thus, lipid flippases are altered by obesity in VAT in a sex-specific manner. Our study provides a better understanding of the sex-specific molecular mechanisms underlying obesity, which may contribute to the development of sex-based precision medicine.

3.
Trends Endocrinol Metab ; 26(9): 502-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26197955

RESUMEN

Hypoxia and its intricate regulation are at the epicenter of cardiovascular research. Mediated by hypoxia-inducible factors as well as by several microRNAs, recently termed 'hypoxamiRs', hypoxia affects several cardiac pathophysiological processes. Hypoxia is the driving force behind the regulation of the characteristic metabolic switch from predominant fatty acid oxidation in the healthy heart to glucose utilization in the failing myocardium, but also instigates reactivation of the fetal gene program, induces the cardiac hypertrophy response, alters extracellular matrix composition, influences mitochondrial biogenesis, and impacts upon myocardial contractility. HypoxamiR regulation adds a new level of complexity to this multitude of hypoxia-mediated effects, rendering the understanding of the hypoxic response a fundamental piece in solving the cardiovascular disease puzzle.


Asunto(s)
Metabolismo Energético , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , MicroARNs/metabolismo , Animales , Humanos , Miocardio/metabolismo , ARN Largo no Codificante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...