Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13215, 2024 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851842

RESUMEN

Using a curved carbon-fiber plate (CFP) in running shoes may offer notable performance benefit over flat plates, yet there is a lack of research exploring the influence of CFP geometry on internal foot loading during running. The objective of this study was to investigate the effects of CFP mechanical characteristics on forefoot biomechanics in terms of plantar pressure, bone stress distribution, and contact force transmission during a simulated impact peak moment in forefoot strike running. We employed a finite element model of the foot-shoe system, wherein various CFP configurations, including three stiffnesses (stiff, stiffer, and stiffest) and two shapes (flat plate (FCFP) and curved plate (CCFP)), were integrated into the shoe sole. Comparing the shoes with no CFP (NCFP) to those with CFP, we consistently observed a reduction in peak forefoot plantar pressure with increasing CFP stiffness. This decrease in pressure was even more notable in a CCFP demonstrating a further reduction in peak pressure ranging from 5.51 to 12.62%, compared to FCFP models. Both FCFP and CCFP designs had a negligible impact on reducing the maximum stress experienced by the 2nd and 3rd metatarsals. However, they greatly influenced the stress distribution in other metatarsal bones. These CFP designs seem to optimize the load transfer pathway, enabling a more uniform force transmission by mainly reducing contact force on the medial columns (the first three rays, measuring 0.333 times body weight for FCFP and 0.335 for CCFP in stiffest condition, compared to 0.373 in NCFP). We concluded that employing a curved CFP in running shoes could be more beneficial from an injury prevention perspective by inducing less peak pressure under the metatarsal heads while not worsening their stress state compared to flat plates.


Asunto(s)
Carrera , Zapatos , Carrera/fisiología , Humanos , Fenómenos Biomecánicos , Presión , Fibra de Carbono/química , Antepié Humano/fisiología , Análisis de Elementos Finitos , Estrés Mecánico , Soporte de Peso/fisiología , Carbono/química , Diseño de Equipo , Pie/fisiología
2.
Front Physiol ; 14: 1182833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664426

RESUMEN

Background: During competition and training, exercises involving the lungs may occur throughout the sport, and fatigue is a major injury risk factor in sport, before and after fatigue studies of changes in the lungs are relatively sparse. This study is to investigate into how fatigue affects the lower limb's biomechanics during a forward lunge. Methods: 15 healthy young men participate in this study before and after to exposed to a fatigue protocol then we tested the forward lunge to obtain kinematic, kinetic changing during the task, and to estimate the corresponding muscles' strength changes in the hip, knee, and ankle joints. The measurement data before and after the fatigue protocol were compared with paired samples t-test. Results: In the sagittal and horizontal planes of the hip and knee joints, in both, the peak angles and joint range of motion (ROM) increased, whereas the moments in the sagittal plane of the knee joint smaller. The ankle joint's maximum angle smaller after fatigue. Peak vertical ground reaction force (vGRF) and peak contact both significantly smaller after completing the fatigue protocol and the quadriceps mean and maximum muscular strength significantly increased. Conclusion: After completing a fatigue protocol during lunge the hip, knee, and ankle joints become less stable in both sagittal and horizontal planes, hip and knee range of motion becomes greater. The quadriceps muscles are more susceptible to fatigue and reduced muscle force. Trainers should focus more on the thigh muscle groups.

3.
J Biomech ; 153: 111597, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37126883

RESUMEN

A carbon-fiber plate (CFP) embedded into running shoes is a commonly applied method to improve running economy, but little is known in regard the effects of CFP design features on internal foot mechanics. This study aimed to explore how systematic changes in CFP geometrical variations (i.e., thickness and location) can alter plantar pressure and strain under the forefoot as well as metatarsal stress state through computational simulations. A foot-shoe finite element (FE) model was built and different CFP features including three thicknesses (1 mm, 2 mm, and 3 mm) and three placements (high-loaded (just below the insole), mid-loaded (in between the midsole), and low-loaded (just above the outsole)) were further modulated within the shoe sole. Simulations were conducted at the impact peak instant during forefoot strike running. Compared with the no-CFP shoe, peak plantar pressure and compressive strain under the forefoot consistently decreased when the CFP thickness increased, and the low-loaded conditions were found more effective (peak pressure decreased up to 31.91% and compressive strain decreased up to 18.61%). In terms of metatarsal stress, CFP designs resulted in varied effects and were dependent on their locations. Specifically, high-loaded CFP led to relatively higher peak metatarsal stress without the reduction trend as thickness increased (peak stress increased up to 12.91%), while low-loaded conditions showed a gradual reduction in peak stress, decreasing by 0.74%. Therefore, a low-loaded thicker CFP should be considered to achieve the pressure-relief effects of running shoes without the expense of increased metatarsal stress.


Asunto(s)
Huesos Metatarsianos , Carrera , Zapatos , Fibra de Carbono , Pie
4.
Bioengineering (Basel) ; 9(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36290465

RESUMEN

Although various sports footwear demonstrated marked changes in running biomechanical variables, few studies have yielded definitive findings on the underlying mechanisms of shoe constructions affecting running-related performance and injuries. Therefore, this study focused on examining the effect of basic shoe constructions on running biomechanics and assessing the current state of sports shoe production in terms of injury and efficiency. Relevant literature was searched on five databases using Boolean logic operation and then screened by eligibility criteria. A total of 1260 related articles were retrieved in this review, and 41 articles that met the requirements were finally included, mainly covering the influence of midsole, longitudinal bending stiffness, heel-toe drop, shoe mass, heel flare, and heel stabilizer on running-related performance and injuries. The results of this review study were: (1) The functional positioning of running shoe design and the target groups tend to influence running performance and injury risk; (2) Thickness of 15-20 mm, hardness of Asker C50-C55 of the midsole, the design of the medial or lateral heel flares of 15°, the curved carbon plate, and the 3D printed heel cup may be beneficial to optimize performance and reduce running-related injuries; (3) The update of research and development concepts in sports biomechanics may further contribute to the development of running shoes; (4) Footwear design and optimization should also consider the influences of runners' strike patterns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA