Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
J Mol Biol ; 436(5): 168331, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37898385

RESUMEN

TAT rhodopsin, a microbial rhodopsin found in the marine SAR11 bacterium HIMB114, uniquely possesses a Thr-Ala-Thr (TAT) motif in the third transmembrane helix. Because of a low pKa value of the retinal Schiff base (RSB), TAT rhodopsin exhibits both a visible light-absorbing state with the protonated RSB and a UV-absorbing state with the deprotonated RSB at a neutral pH. The UV-absorbing state, in contrast to the visible light-absorbing one, converts to a long-lived photointermediate upon light absorption, implying that TAT rhodopsin functions as a pH-dependent light sensor. Despite detailed biophysical characterization and mechanistic studies on the TAT rhodopsin, it has been unknown whether other proteins with similarly unusual features exist. Here, we identified several new rhodopsin genes homologous to the TAT rhodopsin of HIMB114 (TATHIMB) from metagenomic data. Based on the absorption spectra of expressed proteins from these genes with visible and UV peaks similar to that of TATHIMB, they were classified as Twin-peaked Rhodopsin (TwR) family. TwR genes form a gene cluster with a set of 13 ORFs conserved in subclade IIIa of SAR11 bacteria. A glutamic acid in the second transmembrane helix, Glu54, is conserved in all of the TwRs. We investigated E54Q mutants of two TwRs and revealed that Glu54 plays critical roles in regulating the RSB pKa, oligomer formation, and the efficient photoreaction of the UV-absorbing state. The discovery of novel TwRs enables us to study the universality and individuality of the characteristics revealed so far in the original TATHIMB and contributes to further studies on mechanisms of unique properties of TwRs.


Asunto(s)
Alphaproteobacteria , Ácido Glutámico , Rodopsinas Microbianas , Ácido Glutámico/química , Ácido Glutámico/genética , Concentración de Iones de Hidrógeno , Luz , Rodopsinas Microbianas/química , Rodopsinas Microbianas/clasificación , Rodopsinas Microbianas/genética , Secuencia Conservada , Filogenia
3.
Nat Microbiol ; 8(11): 1942-1943, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857820
4.
ISME J ; 17(7): 1063-1073, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120702

RESUMEN

Rhodopsin photosystems convert light energy into electrochemical gradients used by the cell to produce ATP, or for other energy-demanding processes. While these photosystems are widespread in the ocean and have been identified in diverse microbial taxonomic groups, their physiological role in vivo has only been studied in few marine bacterial strains. Recent metagenomic studies revealed the presence of rhodopsin genes in the understudied Verrucomicrobiota phylum, yet their distribution within different Verrucomicrobiota lineages, their diversity, and function remain unknown. In this study, we show that more than 7% of Verrucomicrobiota genomes (n = 2916) harbor rhodopsins of different types. Furthermore, we describe the first two cultivated rhodopsin-containing strains, one harboring a proteorhodopsin gene and the other a xanthorhodopsin gene, allowing us to characterize their physiology under laboratory-controlled conditions. The strains were isolated in a previous study from the Eastern Mediterranean Sea and read mapping of 16S rRNA gene amplicons showed the highest abundances of these strains at the deep chlorophyll maximum (source of their inoculum) in winter and spring, with a substantial decrease in summer. Genomic analysis of the isolates suggests that motility and degradation of organic material, both energy demanding functions, may be supported by rhodopsin phototrophy in Verrucomicrobiota. Under culture conditions, we show that rhodopsin phototrophy occurs under carbon starvation, with light-mediated energy generation supporting sugar transport into the cells. Overall, this study suggests that photoheterotrophic Verrucomicrobiota may occupy an ecological niche where energy harvested from light enables bacterial motility toward organic matter and supports nutrient uptake.


Asunto(s)
Bacterias , Rodopsina , Rodopsina/genética , Rodopsina/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias/genética , Procesos Fototróficos , Transporte Biológico , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo , Filogenia
5.
Nature ; 615(7952): 535-540, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859551

RESUMEN

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.


Asunto(s)
Organismos Acuáticos , Procesos Fototróficos , Bombas de Protones , Rodopsinas Microbianas , Organismos Acuáticos/metabolismo , Organismos Acuáticos/efectos de la radiación , Bacterias/metabolismo , Bacterias/efectos de la radiación , Carotenoides/metabolismo , Color , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Procesos Heterotróficos/efectos de la radiación , Luz , Océanos y Mares , Procesos Fototróficos/efectos de la radiación , Bombas de Protones/metabolismo , Bombas de Protones/efectos de la radiación , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación , Zeaxantinas/metabolismo , Zeaxantinas/efectos de la radiación , Luteína/metabolismo , Luteína/efectos de la radiación , Metagenoma , Lagos
6.
Nat Microbiol ; 8(2): 332-346, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702941

RESUMEN

Virophages are small double stranded DNA (dsDNA) viruses that can only replicate in a host by co-infecting with another virus. Marine algae are commonly associated with virophage-like elements such as Polinton-like viruses (PLVs) that remain largely uncharacterized. Here we isolated a PLV that co-infects the alga Phaeocystis globosa with the Phaeocystis globosa virus-14T (PgV-14T), a close relative of the "Phaeocystis globosa virus-virophage" genomic sequence. We name this PLV 'Gezel-14T. Gezel is phylogenetically distinct from the Lavidaviridae family where all known virophages belong. Gezel-14T co-infection decreases the fitness of its viral host by reducing burst sizes of PgV-14T, yet insufficiently to spare the cellular host population. Genomic screens show Gezel-14T-like PLVs integrated into Phaeocystis genomes, suggesting that these widespread viruses are capable of integration into cellular host genomes. This system presents an opportunity to better understand the evolution of eukaryotic dsDNA viruses as well as the complex dynamics and implications of viral parasitism.


Asunto(s)
Haptophyta , Phycodnaviridae , Virus , Virófagos/genética , Filogenia , Genoma Viral/genética , Virus/genética , Phycodnaviridae/genética , Haptophyta/genética
7.
Sci Adv ; 8(49): eadd7729, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36383037

RESUMEN

The electric excitability of muscle, heart, and brain tissue relies on the precise interplay of Na+- and K+-selective ion channels. The involved ion fluxes are controlled in optogenetic studies using light-gated channelrhodopsins (ChRs). While non-selective cation-conducting ChRs are well established for excitation, K+-selective ChRs (KCRs) for efficient inhibition have only recently come into reach. Here, we report the molecular analysis of recently discovered KCRs from the stramenopile Hyphochytrium catenoides and identification of a novel type of hydrophobic K+ selectivity filter. Next, we demonstrate that the KCR signature motif is conserved in related stramenopile ChRs. Among them, WiChR from Wobblia lunata features a so far unmatched preference for K+ over Na+, stable photocurrents under continuous illumination, and a prolonged open-state lifetime. Showing high expression levels in cardiac myocytes and neurons, WiChR allows single- and two-photon inhibition at low irradiance and reduced tissue heating. Therefore, we recommend WiChR as the long-awaited efficient and versatile optogenetic inhibitor.


Asunto(s)
Luz , Potasio , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Potasio/metabolismo , Optogenética , Neuronas/fisiología , Sodio/metabolismo
8.
Elife ; 112022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36065640

RESUMEN

Rhodopsins convert light into signals and energy in animals and microbes. Heliorhodopsins (HeRs), a recently discovered new rhodopsin family, are widely present in archaea, bacteria, unicellular eukaryotes, and giant viruses, but their function remains unknown. Here, we report that a viral HeR from Emiliania huxleyi virus 202 (V2HeR3) is a light-activated proton transporter. V2HeR3 absorbs blue-green light, and the active intermediate contains the deprotonated retinal Schiff base. Site-directed mutagenesis study revealed that E191 in TM6 constitutes the gate together with the retinal Schiff base. E205 and E215 form a PAG of the Schiff base, and mutations at these positions converted the protein into an outward proton pump. Three environmental viral HeRs from the same group as well as a more distantly related HeR exhibited similar proton-transport activity, indicating that HeR functions might be diverse similarly to type-1 microbial rhodopsins. Some strains of E. huxleyi contain one HeR that is related to the viral HeRs, while its viruses EhV-201 and EhV-202 contain two and three HeRs, respectively. Except for V2HeR3 from EhV-202, none of these proteins exhibit ion transport activity. Thus, when expressed in the E. huxleyi cell membranes, only V2HeR3 has the potential to depolarize the host cells by light, possibly to overcome the host defense mechanisms or to prevent superinfection. The neuronal activity generated by V2HeR3 suggests that it can potentially be used as an optogenetic tool, similarly to type-1 microbial rhodopsins.


Asunto(s)
Virus Gigantes , Protones , Animales , Transporte Iónico , Rodopsina/genética , Rodopsinas Microbianas/genética , Bases de Schiff
9.
Methods Mol Biol ; 2501: 101-108, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35857224

RESUMEN

Most microbial groups have not been cultivated yet, and the only way to approach the enormous diversity of rhodopsins that they contain in a sensible timeframe is through the analysis of their genomes. High-throughput sequencing technologies have allowed the release of community genomics (metagenomics) of many habitats in the photic zones of the ocean and lakes. Already the harvest is impressive and included from the first bacterial rhodopsin (proteorhodopsin) to the recent discovery of heliorhodopsin by functional metagenomics. However, the search continues using bioinformatic or biochemical routes.


Asunto(s)
Metagenoma , Rodopsinas Microbianas , Metagenómica , Filogenia , Rodopsinas Microbianas/genética
10.
Nat Struct Mol Biol ; 29(6): 592-603, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35710843

RESUMEN

Many organisms sense light using rhodopsins, photoreceptive proteins containing a retinal chromophore. Here we report the discovery, structure and biophysical characterization of bestrhodopsins, a microbial rhodopsin subfamily from marine unicellular algae, in which one rhodopsin domain of eight transmembrane helices or, more often, two such domains in tandem, are C-terminally fused to a bestrophin channel. Cryo-EM analysis of a rhodopsin-rhodopsin-bestrophin fusion revealed that it forms a pentameric megacomplex (~700 kDa) with five rhodopsin pseudodimers surrounding the channel in the center. Bestrhodopsins are metastable and undergo photoconversion between red- and green-absorbing or green- and UVA-absorbing forms in the different variants. The retinal chromophore, in a unique binding pocket, photoisomerizes from all-trans to 11-cis form. Heterologously expressed bestrhodopsin behaves as a light-modulated anion channel.


Asunto(s)
Canales Iónicos , Rodopsina , Bestrofinas , Rodopsina/química
11.
ISME J ; 16(8): 2056-2059, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35440729

RESUMEN

Microbial rhodopsins are a family of photoreceptive membrane proteins with a wide distribution across the Tree of Life. Within the candidate phyla radiation (CPR), a diverse group of putatively episymbiotic bacteria, the genetic potential to produce rhodopsins appears to be confined to a small clade of organisms from sunlit environments. Here, we characterize the metabolic context and biophysical features of Saccharibacteria Type-1 rhodopsin sequences derived from metagenomic surveys and show that these proteins function as outward proton pumps. This provides one of the only known mechanisms by which CPR can generate a proton gradient for ATP synthesis. These Saccharibacteria do not encode the genetic machinery to produce all-trans-retinal, the chromophore essential for rhodopsin function, but their rhodopsins are able to rapidly uptake this cofactor when provided in experimental assays. We found consistent evidence for the capacity to produce retinal from ß-carotene in microorganisms co-occurring with Saccharibacteria, and this genetic potential was dominated by members of the Actinobacteria, which are known hosts of Saccharibacteria in other habitats. If Actinobacteria serve as hosts for Saccharibacteria in freshwater environments, exchange of retinal for use by rhodopsin may be a feature of their associations.


Asunto(s)
Actinobacteria , Rodopsina , Actinobacteria/genética , Actinobacteria/metabolismo , Bacterias/genética , Bacterias/metabolismo , Luz , Bombas de Protones/genética , Bombas de Protones/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/metabolismo
12.
Environ Microbiol ; 24(1): 110-121, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34984789

RESUMEN

The recently discovered rhodopsin family of heliorhodopsins (HeRs) is abundant in diverse microbial environments. So far, the functional and biological roles of HeRs remain unknown. To tackle this issue, we combined experimental and computational screens to gain some novel insights. Here, 10 readily expressed HeR genes were found using functional metagenomics on samples from two freshwater environments. These HeRs originated from diverse prokaryotic groups: Actinobacteria, Chloroflexi and Archaea. Heterologously expressed HeRs absorbed light in the green and yellow wavelengths (543-562 nm) and their photocycles exhibited diverse kinetic characteristics. To approach the physiological function of the HeRs, we used our environmental clones along with thousands of microbial genomes to analyze genes neighbouring HeRs. The strongest association was found with the DegV family involved in activation of fatty acids, which allowed us to hypothesize that HeRs might be involved in light-induced membrane lipid modifications.


Asunto(s)
Actinobacteria , Chloroflexi , Actinobacteria/genética , Archaea/genética , Agua Dulce , Metagenómica , Rodopsinas Microbianas
13.
Annu Rev Microbiol ; 75: 427-447, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343014

RESUMEN

Microbial rhodopsins are diverse photoreceptive proteins containing a retinal chromophore and are found in all domains of cellular life and are even encoded in genomes of viruses. These rhodopsins make up two families: type 1 rhodopsins and the recently discovered heliorhodopsins. These families have seven transmembrane helices with similar structures but opposing membrane orientation. Microbial rhodopsins participate in a portfolio of light-driven energy and sensory transduction processes. In this review we present data collected over the last two decades about these rhodopsins and describe their diversity, functions, and biological and ecological roles.


Asunto(s)
Rodopsina , Rodopsinas Microbianas , Humanos , Rodopsina/química , Rodopsina/metabolismo , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo
14.
Curr Biol ; 31(14): R898-R900, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34314715

RESUMEN

A new environmental study has discovered marine phages containing deoxyuridine instead of deoxythymidine in their DNA. The newly isolated viruses are phylogenetically distinct from any currently known double-stranded DNA phages.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Biología , Genoma Viral
16.
Commun Biol ; 4(1): 362, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742139

RESUMEN

Microbial rhodopsins are photoreceptive membrane proteins, which are used as molecular tools in optogenetics. Here, a machine learning (ML)-based experimental design method is introduced for screening rhodopsins that are likely to be red-shifted from representative rhodopsins in the same subfamily. Among 3,022 ion-pumping rhodopsins that were suggested by a protein BLAST search in several protein databases, the ML-based method selected 65 candidate rhodopsins. The wavelengths of 39 of them were able to be experimentally determined by expressing proteins with the Escherichia coli system, and 32 (82%, p = 7.025 × 10-5) actually showed red-shift gains. In addition, four showed red-shift gains >20 nm, and two were found to have desirable ion-transporting properties, indicating that they would be potentially useful in optogenetics. These findings suggest that data-driven ML-based approaches play effective roles in the experimental design of rhodopsin and other photobiological studies. (141/150 words).


Asunto(s)
Canales Iónicos/metabolismo , Aprendizaje Automático , Optogenética , Rodopsinas Microbianas/metabolismo , Secuencia de Aminoácidos , Teorema de Bayes , Color , Bases de Datos de Proteínas , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Canales Iónicos/genética , Canales Iónicos/efectos de la radiación , Luz , Prueba de Estudio Conceptual , Conformación Proteica en Hélice alfa , Rodopsinas Microbianas/genética , Rodopsinas Microbianas/efectos de la radiación , Análisis de Secuencia de Proteína
17.
Biochemistry ; 60(12): 899-907, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33721993

RESUMEN

In many rhodopsins, the retinal Schiff base pKa remains very high, ensuring Schiff base protonation captures visible light. Nevertheless, recently we found that TAT rhodopsin contains protonated and unprotonated forms at physiological pH. The protonated form displays a unique photochemical behavior in which the primary K intermediate returns to the original state within 10-5 s, and the lack of photocycle completion poses questions about the functional role of TAT rhodopsin. Here we studied the molecular properties of the protonated and unprotonated forms of the Schiff base in TAT rhodopsin. We confirmed no photointermediate formation at >10-5 s for the protonated form of TAT rhodopsin in microenvironments such as detergents, nanodiscs, and liposomes. In contrast, the unprotonated form features a very long photocycle with a time constant of 15 s. A low-temperature study revealed that the primary reaction of the unprotonated form is all-trans to 13-cis photoisomerization, which is usual, but with a proton transfer reaction occurring at 77 K, which is unusual. The active intermediate contains the unprotonated Schiff base as well as the resting state. Electrophysiological measurements excluded ion-transport activity for TAT rhodopsin, while transient outward proton movement only at an alkaline extracellular pH indicates that TAT rhodopsin senses the extracellular pH. On the basis of the findings presented here, we propose that TAT rhodopsin is an ultraviolet (UV)-dependent environmental pH sensor in marine bacteria. At acidic pH, absorbed visible light energy is quickly dissipated into heat without any function. In contrast, when the environmental pH becomes high, absorption of UV/blue light yields formation of the long-lived intermediates, possibly driving the signal transduction cascade in marine bacteria.


Asunto(s)
Rodopsina/metabolismo , Temperatura , Rayos Ultravioleta , Concentración de Iones de Hidrógeno
18.
Proc Natl Acad Sci U S A ; 117(47): 29738-29747, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33172994

RESUMEN

Virus-microbe interactions have been studied in great molecular details for many years in cultured model systems, yielding a plethora of knowledge on how viruses use and manipulate host machinery. Since the advent of molecular techniques and high-throughput sequencing, methods such as cooccurrence, nucleotide composition, and other statistical frameworks have been widely used to infer virus-microbe interactions, overcoming the limitations of culturing methods. However, their accuracy and relevance is still debatable as cooccurrence does not necessarily mean interaction. Here we introduce an ecological perspective of marine viral communities and potential interaction with their hosts, using analyses that make no prior assumptions on specific virus-host pairs. By size fractionating water samples into free viruses and microbes (i.e., also viruses inside or attached to their hosts) and looking at how viral group abundance changes over time along both fractions, we show that the viral community is undergoing a change in rank abundance across seasons, suggesting a seasonal succession of viruses in the Red Sea. We use abundance patterns in the different size fractions to classify viral clusters, indicating potential diverse interactions with their hosts and potential differences in life history traits between major viral groups. Finally, we show hourly resolved variations of intracellular abundance of similar viral groups, which might indicate differences in their infection cycles or metabolic capacities.


Asunto(s)
Organismos Acuáticos/virología , Estaciones del Año , Agua de Mar/microbiología , Viroma/genética , Virus/genética , Organismos Acuáticos/genética , ADN Viral/aislamiento & purificación , Océano Índico , Metagenoma , Interacciones Microbianas/genética , Virus/clasificación , Virus/aislamiento & purificación
19.
Curr Biol ; 30(24): 4910-4920.e5, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33065010

RESUMEN

Channelrhodopsins (ChRs) are light-gated ion channels widely used as optogenetic tools for manipulating neuronal activity. The currently characterized ChR families include green algal and cryptophyte cation-conducting ChRs (CCRs) and cryptophyte, haptophyte, and stramenopile anion-conducting ChRs (ACRs). Here, we report the discovery of a new family of phylogenetically distinct ChRs encoded by marine giant viruses and acquired from their unicellular green algal hosts. These previously unknown viral and green algal ChRs act as ACRs when expressed in cultured neuroblastoma-derived cells and are likely involved in behavioral responses to light.


Asunto(s)
Channelrhodopsins/genética , Chlorophyta/genética , Transferencia de Gen Horizontal , Genes Virales , Virus Gigantes/genética , Animales , Aniones/metabolismo , Línea Celular , Channelrhodopsins/metabolismo , Chlorophyta/metabolismo , Chlorophyta/efectos de la radiación , Chlorophyta/virología , Virus Gigantes/metabolismo , Células Híbridas , Luz , Metagenómica , Ratones , Optogenética , Filogenia , Ratas
20.
Sci Adv ; 6(15): eaaz2441, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32300653

RESUMEN

Schizorhodopsins (SzRs), a rhodopsin family first identified in Asgard archaea, the archaeal group closest to eukaryotes, are present at a phylogenetically intermediate position between typical microbial rhodopsins and heliorhodopsins. However, the biological function and molecular properties of SzRs have not been reported. Here, SzRs from Asgardarchaeota and from a yet unknown microorganism are expressed in Escherichia coli and mammalian cells, and ion transport assays and patch clamp analyses are used to demonstrate SzR as a novel type of light-driven inward H+ pump. The mutation of a cytoplasmic glutamate inhibited inward H+ transport, suggesting that it functions as a cytoplasmic H+ acceptor. The function, trimeric structure, and H+ transport mechanism of SzR are similar to that of xenorhodopsin (XeR), a light-driven inward H+ pumping microbial rhodopsins, implying that they evolved convergently. The inward H+ pump function of SzR provides new insight into the photobiological life cycle of the Asgardarchaeota.


Asunto(s)
Archaea/metabolismo , Activación del Canal Iónico/efectos de la radiación , Bombas de Protones/metabolismo , Rodopsina/metabolismo , Archaea/genética , Membrana Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Luz , Modelos Moleculares , Familia de Multigenes , Mutación , Conformación Proteica , Bombas de Protones/química , Bombas de Protones/genética , Rodopsina/química , Rodopsina/genética , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...