Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
2.
Sci Rep ; 12(1): 19198, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36357519

RESUMEN

The exploitation of both conventional and unconventional hydrocarbons may lead to still not well-known environmental consequences such as ground deformation and induced/triggered seismicity. Identifying and characterizing these effects is fundamental for prevention or mitigation purposes, especially when they impact populated areas. Two case studies of such effects on hydrocarbon-producing basins in Argentina, the Neuquén and the Golfo de San Jorge, are presented in this work. The intense hydrocarbon production activities in recent years and their potential link with the occurrence of two earthquakes of magnitude 4.9 and 5 near the operating well fields is assessed. A joint analysis of satellite radar interferometry and records of fluid injection and extraction demonstrate that, between 2017 and 2020, vertical ground displacements occurred in both study areas over active well fields that might indicate a correlation to hydrocarbon production activities. Coseismic deformation models of the two earthquakes constrain source depths to less than 2 km. The absence of seismicity before the beginning of the hydrocarbon activities in both areas, and the occurrence of the two largest and shallow earthquakes in the vicinity of the active well fields just after intensive production periods, points towards the potential association between both phenomena.


Asunto(s)
Terremotos , Argentina , Hidrocarburos , Radar , Interferometría
4.
Sci Rep ; 9(1): 11164, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371752

RESUMEN

Different kinematic models have been proposed for the triple junction between the North American, Cocos and Caribbean plates. The two most commonly accepted hypotheses on its driving mechanism are (a) the North American drag of the forearc and (b) the Cocos Ridge subduction push. We present an updated GPS velocity field which is analyzed together with earthquake focal mechanisms and regional relief. The two hypotheses have been used to make kinematic predictions that are tested against the available data. An obliquity analysis is also presented to discuss the potential role of slip partitioning as driving mechanism. The North American drag model presents a better fit to the observations, although the Cocos Ridge push model explains the data in Costa Rica and Southern Nicaragua. Both mechanisms must be active, being the driving of the Central American forearc towards the NW analogous to a push-pull train. The forearc sliver moves towards the west-northwest at a rate of 12-14 mm/yr, being pinned to the North American plate in Chiapas and western Guatemala, where the strike-slip motion on the volcanic arc must be very small.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...