Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35668612

RESUMEN

Insects have developed various adaptations to survive harsh winter conditions. Among freeze-intolerant species, some produce "antifreeze proteins" (AFPs) that bind to nascent ice crystals and inhibit further ice growth. Such is the case of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae), a destructive North American conifer pest that can withstand temperatures below -30°C. Despite the potential importance of AFPs in the adaptive diversification of Choristoneura, genomic tools to explore their origins have until now been limited. Here we present a chromosome-scale genome assembly for C. fumiferana, which we used to conduct comparative genomic analyses aimed at reconstructing the evolutionary history of tortricid AFPs. The budworm genome features 16 genes homologous to previously reported C. fumiferana AFPs (CfAFPs), 15 of which map to a single region on chromosome 18. Fourteen of these were also detected in five congeneric species, indicating Choristoneura AFP diversification occurred before the speciation event that led to C. fumiferana. Although budworm AFPs were previously considered unique to the genus Choristoneura, a search for homologs targeting recently sequenced tortricid genomes identified seven CfAFP-like genes in the distantly related Notocelia uddmanniana. High structural similarity between Notocelia and Choristoneura AFPs suggests a common origin, despite the absence of homologs in three related tortricids. Interestingly, one Notocelia AFP formed the C-terminus of a "zonadhesin-like" protein, possibly representing the ancestral condition from which tortricid AFPs evolved. Future work should clarify the evolutionary path of AFPs between Notocelia and Choristoneura and assess the role of the "zonadhesin-like" protein as precursor of tortricid AFPs.

2.
Sci Rep ; 9(1): 16413, 2019 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-31712581

RESUMEN

Two subspecies of Asian gypsy moth (AGM), Lymantria dispar asiatica and L. dispar japonica, pose a serious alien invasive threat to North American forests. Despite decades of research on the ecology and biology of this pest, limited AGM-specific genomic resources are currently available. Here, we report on the genome sequences and functional content of these AGM subspecies. The genomes of L.d. asiatica and L.d. japonica are the largest lepidopteran genomes sequenced to date, totaling 921 and 999 megabases, respectively. Large genome size in these subspecies is driven by the accumulation of specific classes of repeats. Genome-wide metabolic pathway reconstructions suggest strong genomic signatures of energy-related pathways in both subspecies, dominated by metabolic functions related to thermogenesis. The genome sequences reported here will provide tools for probing the molecular mechanisms underlying phenotypic traits that are thought to enhance AGM invasiveness.


Asunto(s)
Variación Genética , Genoma de los Insectos , Elementos de Nucleótido Esparcido Largo , Mariposas Nocturnas/genética , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Biología Computacional/métodos , Elementos Transponibles de ADN , Metabolismo Energético , Estudio de Asociación del Genoma Completo , Genómica/métodos , Redes y Vías Metabólicas , Mariposas Nocturnas/metabolismo , Especificidad de la Especie
3.
Mob DNA ; 9: 19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29946369

RESUMEN

BACKGROUND: Transposable elements (TEs) are common and often present with high copy numbers in cellular genomes. Unlike in cellular organisms, TEs were previously thought to be either rare or absent in viruses. Almost all reported TEs display only one or two copies per viral genome. In addition, the discovery of pandoraviruses with genomes up to 2.5-Mb emphasizes the need for biologists to rethink the fundamental nature of the relationship between viruses and cellular life. RESULTS: Herein, we performed the first comprehensive analysis of miniature inverted-repeat transposable elements (MITEs) in the 5170 viral genomes for which sequences are currently available. Four hundred and fifty one copies of ten miniature inverted-repeat transposable elements (MITEs) were found and each MITE had reached relatively large copy numbers (some up to 90) in viruses. Eight MITEs belonging to two DNA superfamilies (hobo/Activator/Tam3 and Chapaev-Mirage-CACTA) were for the first time identified in viruses, further expanding the organismal range of these two superfamilies. TEs may play important roles in shaping the evolution of pandoravirus genomes, which were here found to be very rich in MITEs. We also show that putative autonomous partners of seven MITEs are present in the genomes of viral hosts, suggesting that viruses may borrow the transpositional machinery of their cellular hosts' autonomous elements to spread MITEs and colonize their own genomes. The presence of seven similar MITEs in viral hosts, suggesting horizontal transfers (HTs) as the major mechanism for MITEs propagation. CONCLUSIONS: Our discovery highlights that TEs contribute to shape genome evolution of pandoraviruses. We concluded that as for cellular organisms, TEs are part of the pandoraviruses' diverse mobilome.

4.
J Insect Physiol ; 107: 244-249, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29704478

RESUMEN

Encapsulation and melanisation are innate immune reactions of insects against foreign intruders such as parasitoids. In an earlier study, we observed that immature life stages of the endoparasitoid Tranosema rostrale (Hymenoptera: Ichneumonidae) parasitizing Choristoneura fumiferana (Lepidoptera: Tortricidae) larvae experienced higher mortality due to encapsulation and melanisation when reared at high (30 °C) than at lower (10 °C, 20 °C) temperatures. Downregulation of T. rostrale polydnavirus genes in parasitized hosts and upregulation of two genes involved in the spruce budworm's melanisation process were identified as likely contributors to parasitoid mortality at high temperature. However, levels of transcripts of genes involved in the spruce budworm's cellular encapsulation process were not measured inasmuch as candidate genes, in the spruce budworm, had not yet been identified. In addition, our assessment of temperature-dependent encapsulation and melanisation of foreign objects in spruce budworm larvae was only partial. To fill these knowledge gaps, we injected Sephadex™ beads into unparasitized spruce budworm larvae and assessed their encapsulation/melanisation after the insects had been held at three different temperatures (10, 20, and 30 °C), and we identified spruce budworm genes putatively involved in the encapsulation process and quantified their transcripts at the same three temperatures, using a qPCR approach. As expected, both encapsulation and melanisation of Sephadex™ beads increased as a function of temperature. At the molecular level, three of the five genes examined (Integrin ß1, Hopscotch, Stat92E) clearly displayed temperature-dependent upregulation. The results of this study further support the hypothesis that a temperature-dependent increase in the encapsulation response of C. fumiferana against T. rostrale is due to the combined effects of reduced expression of polydnavirus genes and enhanced expression of host immune genes.


Asunto(s)
Regulación de la Expresión Génica , Calor , Proteínas de Insectos/genética , Mariposas Nocturnas/parasitología , Animales , Regulación hacia Abajo , Interacciones Huésped-Parásitos , Proteínas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Larva/parasitología , Mariposas Nocturnas/crecimiento & desarrollo , Regulación hacia Arriba
5.
Insect Biochem Mol Biol ; 92: 84-92, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29183817

RESUMEN

Farnesyl diphosphate synthase (FPPS) is an enzyme from the class of short chain (E)-prenyltransferases that catalyzes the condensation of two molecules of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) to generate the C15 product FPP. In insects, FPPS plays a key role in the biosynthesis of the morphogenetic and gonadotropic "juvenile hormone" (JH). Lepidopteran genomes encode two very distinct FPPS paralogs, one of which ("type-II") is expressed almost exclusively in the JH-producing glands, the corpora allata. This paralog has been hypothesized to display structural features that enable the binding of the bulkier precursors required for the biosynthesis of lepidopteran ethyl-branched JHs. Here, we report on the first crystal structures of an insect FPPS solved to date. Apo, ligand-bound, and inhibitor-bound structures of type-II FPPS (FPPS2) from the spruce budworm, Choristoneura fumiferana (Order: Lepidoptera), were obtained. Comparison of apo and inhibitor-bound enzymes revealed differences in both inhibitor binding and structural plasticity of CfFPPS2 compared to other FPPSs. Our data showed that IPP is not essential to the closure of the C-terminal tail. Ortho-substituted pyridinium bisphosphonates, previously shown to inhibit CfFPPS2, bound to the allylic site, as predicted; however, their alkyl groups were oriented towards the homoallylic binding site, with the bulkier propyl-substituted inhibitor penetrating deeply into the IPP binding pocket. The current study sheds light on the structural basis of substrate specificity of type-II FPPS of the spruce budworm. Through a comparison with other inhibitor-bound FPPSs, we propose several approaches to improve inhibitor selectivity and potency.


Asunto(s)
Geraniltranstransferasa/química , Proteínas de Insectos/química , Mariposas Nocturnas/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Difosfonatos/metabolismo , Mariposas Nocturnas/química , Compuestos de Piridinio/metabolismo , Especificidad por Sustrato
6.
Mol Ecol ; 26(23): 6666-6684, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29055150

RESUMEN

Populations are often exposed to multiple sources of gene flow, but accounts are lacking of the population genetic dynamics that result from these interactions or their effects on local evolution. Using a genomic clines framework applied to 1,195 single nucleotide polymorphisms, we documented genomewide, locus-specific patterns of introgression between Choristoneura occidentalis biennis spruce budworms and two ecologically divergent relatives, C. o. occidentalis and Choristoneura fumiferana, that it interacts with at alternate boundaries of its range. We observe contrasting hybrid indexes between the two hybrid zones, no overlap in "gene-flow outliers" (clines showing relatively extreme extents or rates of locus-specific introgression) and variable linkage disequilibrium among those outliers. At the same time, correlated genomewide rates of introgression between zones suggest the presence of processes common to both boundaries. These findings highlight the contrasting population genetic dynamics that can occur at separate frontiers of a single population, while also suggesting that shared patterns may frequently accompany cases of divergence-with-gene-flow that involve a lineage in common. Our results point to potentially complex evolutionary outcomes for populations experiencing multiple sources of gene flow.


Asunto(s)
Flujo Génico , Genética de Población , Hibridación Genética , Lepidópteros/clasificación , Alberta , Animales , Colombia Británica , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Dinámica Poblacional , Saskatchewan
7.
PLoS One ; 11(8): e0160878, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27513667

RESUMEN

Preventing the introduction and establishment of forest invasive alien species (FIAS) such as the Asian gypsy moth (AGM) is a high-priority goal for countries with extensive forest resources such as Canada. The name AGM designates a group of closely related Lymantria species (Lepidoptera: Erebidae: Lymantriinae) comprising two L. dispar subspecies (L. dispar asiatica, L. dispar japonica) and three closely related Lymantria species (L. umbrosa, L. albescens, L. postalba), all considered potential FIAS in North America. Ships entering Canadian ports are inspected for the presence of suspicious gypsy moth eggs, but those of AGM are impossible to distinguish from eggs of innocuous Lymantria species. To assist regulatory agencies in their identification of these insects, we designed a suite of TaqMan® assays that provide significant improvements over existing molecular assays targeting AGM. The assays presented here can identify all three L. dispar subspecies (including the European gypsy moth, L. dispar dispar), the three other Lymantria species comprising the AGM complex, plus five additional Lymantria species that pose a threat to forests in North America. The suite of assays is built as a "molecular key" (analogous to a taxonomic key) and involves several parallel singleplex and multiplex qPCR reactions. Each reaction uses a combination of primers and probes designed to separate taxa through discriminatory annealing. The success of these assays is based on the presence of single nucleotide polymorphisms (SNPs) in the 5' region of mitochondrial cytochrome c oxidase I (COI) or in its longer, 3' region, as well as on the presence of an indel in the "FS1" nuclear marker, generating North American and Asian alleles, used here to assess Asian introgression into L. dispar dispar. These assays have the advantage of providing rapid and accurate identification of ten Lymantria species and subspecies considered potential FIAS.


Asunto(s)
Especies Introducidas , Mariposas Nocturnas/genética , Animales , Complejo IV de Transporte de Electrones/química , Marcadores Genéticos , Mariposas Nocturnas/clasificación , América del Norte , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Especificidad de la Especie
8.
J Virol ; 89(17): 8909-21, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26085165

RESUMEN

UNLABELLED: Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were "captured" by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE: Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes of ancestral wasps. However, the identity of the ichnovirus ancestor is unknown, and questions remain regarding the possibility that the two described ichnovirus subgroups, banchine and campoplegine ichnoviruses, have distinct origins. Our study provides unequivocal evidence that these two ichnovirus types are derived from related viral progenitors. This suggests that morphological and genomic differences observed between the ichnovirus lineages, including features unique to banchine ichnovirus genome segments, result from evolutionary divergence either before or after their endogenization. Strikingly, analysis of selected wasp genomic regions revealed genes presumed to be part of the replicative machinery of the progenitor virus, shedding new light on the likely identity of this virus. Finally, these genes could well play a role in ichnovirus replication as they were overexpressed in the virogenic tissue.


Asunto(s)
ADN Viral/genética , Evolución Molecular , Polydnaviridae/clasificación , Polydnaviridae/genética , Animales , Secuencia de Bases , Evolución Biológica , Perfilación de la Expresión Génica , Genoma Viral , Genómica , Datos de Secuencia Molecular , Polydnaviridae/enzimología , Análisis de Secuencia de ADN , Proteínas Virales/genética , Avispas/virología
9.
Insect Biochem Mol Biol ; 43(10): 947-58, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23907071

RESUMEN

Geranylgeranyl diphosphate synthase (GGPPS) catalyzes the condensation of the non-allylic diphosphate, isopentenyl diphosphate (IPP; C5), with allylic diphosphates to generate the C20 prenyl chain (GGPP) used for protein prenylation and diterpenoid biosynthesis. Here, we cloned the cDNA of a GGPPS from the spruce budworm, Choristoneura fumiferana, and characterized the corresponding recombinant protein (rCfGGPPS). As shown for other type-III GGPPSs, rCfGGPPS preferred farnesyl diphosphate (FPP; C15) over other allylic substrates for coupling with IPP. Unexpectedly, rCfGGPPS displayed inhibition by its FPP substrate at low IPP concentration, suggesting the existence of a mechanism that may regulate intracellular FPP pools. rCfGGPPS was also inhibited by its product, GGPP, in a competitive manner with respect to FPP, as reported for human and bovine brain GGPPSs. A homology model of CfGGPPS was prepared and compared to human and yeast GGPPSs. Consistent with its enzymological properties, CfGGPPS displayed a larger active site cavity that can accommodate the binding of FPP and GGPP in the region normally occupied by IPP and the allylic isoprenoid tail, and the binding of GGPP in an alternate orientation seen for GGPP binding to the human protein. To begin exploring the role of CfGGPPS in protein prenylation, its transcripts were quantified by qPCR in whole insects, along with those of other genes involved in this pathway. CfGGPPS was expressed throughout insect development and the abundance of its transcripts covaried with that of other prenylation-related genes. Our qPCR results suggest that geranylgeranylation is the predominant form of prenylation in whole C. fumiferana.


Asunto(s)
Farnesiltransferasa/biosíntesis , Farnesiltransferasa/genética , Mariposas Nocturnas/enzimología , Secuencia de Aminoácidos , Animales , Clonación Molecular , Escherichia coli/genética , Farnesiltransferasa/química , Cinética , Ligandos , Datos de Secuencia Molecular , Mariposas Nocturnas/crecimiento & desarrollo , Prenilación de Proteína/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
10.
PLoS One ; 8(7): e68968, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861954

RESUMEN

The complete genome sequences of Choristoneura occidentalis and C. rosaceana nucleopolyhedroviruses (ChocNPV and ChroNPV, respectively) (Baculoviridae: Alphabaculovirus) were determined and compared with each other and with those of other baculoviruses, including the genome of the closely related C. fumiferana NPV (CfMNPV). The ChocNPV genome was 128,446 bp in length (1147 bp smaller than that of CfMNPV), had a G+C content of 50.1%, and contained 148 open reading frames (ORFs). In comparison, the ChroNPV genome was 129,052 bp in length, had a G+C content of 48.6% and contained 149 ORFs. ChocNPV and ChroNPV shared 144 ORFs in common, and had a 77% sequence identity with each other and 96.5% and 77.8% sequence identity, respectively, with CfMNPV. Five homologous regions (hrs), with sequence similarities to those of CfMNPV, were identified in ChocNPV, whereas the ChroNPV genome contained three hrs featuring up to 14 repeats. Both genomes encoded three inhibitors of apoptosis (IAP-1, IAP-2, and IAP-3), as reported for CfMNPV, and the ChocNPV IAP-3 gene represented the most divergent functional region of this genome relative to CfMNPV. Two ORFs were unique to ChocNPV, and four were unique to ChroNPV. ChroNPV ORF chronpv38 is a eukaryotic initiation factor 5 (eIF-5) homolog that has also been identified in the C. occidentalis granulovirus (ChocGV) and is believed to be the product of horizontal gene transfer from the host. Based on levels of sequence identity and phylogenetic analysis, both ChocNPV and ChroNPV fall within group I alphabaculoviruses, where ChocNPV appears to be more closely related to CfMNPV than does ChroNPV. Our analyses suggest that it may be appropriate to consider ChocNPV and CfMNPV as variants of the same virus species.


Asunto(s)
Genoma Viral , Mariposas Nocturnas/virología , Nucleopoliedrovirus/genética , Animales , Biología Computacional , Orden Génico , Genes Virales , Nucleopoliedrovirus/clasificación , Nucleopoliedrovirus/fisiología , Sistemas de Lectura Abierta , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Replicación Viral
11.
J Gen Virol ; 94(Pt 8): 1888-1895, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23658210

RESUMEN

Polydnaviruses (PDVs) are symbiotic viruses carried by endoparasitic wasps and transmitted to caterpillar hosts during parasitization. Although they share several features, including a segmented dsDNA genome, a unique life cycle where replication is restricted to the wasp host, and immunodepressive/developmental effects on the caterpillar host, PDVs carried by ichneumonid and braconid wasps (referred to as ichnoviruses and bracoviruses, respectively) have different evolutionary origins. In addition, ichnoviruses (IVs) form two distinct lineages, with viral entities found in wasps belonging to the subfamilies Campopleginae and Banchinae displaying strikingly different virion morphologies and genomic features. However, the current description for banchine IVs is based on the characterization of a single species, namely that of the Glypta fumiferanae IV (GfIV). Here we provide an ultrastructural and genomic analysis of a second banchine IV isolated from the wasp Apophua simplicipes, and we show that this virus shares many features with GfIV, including a multi-nucleocapsid virion, an aggregate genome size of ~300 kb, genome segments <5 kb, an impressively high degree of genome segmentation and a very similar gene content (same gene families in both viruses). Altogether, the data presented here confirm the existence of shared characteristics within this banchine IV lineage.


Asunto(s)
ADN Viral/química , ADN Viral/genética , Genoma Viral , Polydnaviridae/genética , Polydnaviridae/ultraestructura , Virión/ultraestructura , Avispas/virología , Animales , Análisis por Conglomerados , Datos de Secuencia Molecular , Filogenia , Polydnaviridae/aislamiento & purificación , Análisis de Secuencia de ADN
12.
J Chem Ecol ; 39(3): 377-89, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23468223

RESUMEN

Fuscumol [(2S,5E)-6,10-dimethyl-5,9-undecadien-2-ol] was recently identified as the male-produced aggregation pheromone of the brown spruce longhorn beetle, Tetropium fuscum (F.), and the eastern larch borer, Tetropium cinnamopterum Kirby. Several other species use this homoterpenoid alcohol motif, its ketone, or its acetate as part of their pheromone system. Investigation of the biosynthesis of this compound in these two Tetropium species demonstrated that geranylacetone [(5E)-6,10-dimethyl-5,9-undecadien-2-one] and farnesol [(2E,6E)-3,7,11-trimethyl-2,6,10-dodecatrien-1-ol] are both intermediates in this process. This was accomplished by applying deuterium-labeled geranylacetone and deuterium-labeled farnesol in separate experiments to the abdominal sterna of live T. fuscum and T. cinnamopterum and analyzing the deuterium labeling in the fuscumol and geranylacetone emitted by the insects with solid-phase microextraction (SPME) and GC/MS analysis. Deuterium labeling studies also showed that nerolidol[(3S,6E)-3-hydroxy-3,7,11-trimethyl-1,6,10-dodecatriene] and 2,3-epoxyfarnesol are not intermediates in fuscumol or geranylacetone synthesis in T. fuscum or T. cinnamopterum. Tissue-specific expression of T. fuscum farnesyl diphosphate synthase (TfFPPS), an enzyme expected to provide a key fuscumol precursor, was measured. TfFPPS transcripts were relatively abundant in male midguts, but were also present at significant levels in other tissues.


Asunto(s)
Escarabajos/metabolismo , Feromonas/biosíntesis , Animales , Clonación Molecular , Escarabajos/enzimología , Escarabajos/genética , Femenino , Regulación Enzimológica de la Expresión Génica , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Masculino , Especificidad de Órganos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Terpenos/metabolismo
13.
PLoS One ; 8(2): e56555, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23424668

RESUMEN

BACKGROUND: Insects rely on olfaction to locate food, mates, and suitable oviposition sites for successful completion of their life cycle. Agrilus planipennis Fairmaire (emerald ash borer) is a serious invasive insect pest that has killed tens of millions of North American ash (Fraxinus spp) trees and threatens the very existence of the genus Fraxinus. Adult A. planipennis are attracted to host volatiles and conspecifics; however, to date no molecular knowledge exists on olfaction in A. planipennis. Hence, we undertook an antennae-specific transcriptomic study to identify the repertoire of odor processing genes involved in A. planipennis olfaction. METHODOLOGY AND PRINCIPAL FINDINGS: We acquired 139,085 Roche/454 GS FLX transcriptomic reads that were assembled into 30,615 high quality expressed sequence tags (ESTs), including 3,249 isotigs and 27,366 non-isotigs (contigs and singletons). Intriguingly, the majority of the A. planipennis antennal transcripts (59.72%) did not show similarity with sequences deposited in the non-redundant database of GenBank, potentially representing novel genes. Functional annotation and KEGG analysis revealed pathways associated with signaling and detoxification. Several odor processing genes (9 odorant binding proteins, 2 odorant receptors, 1 sensory neuron membrane protein and 134 odorant/xenobiotic degradation enzymes, including cytochrome P450s, glutathione-S-transferases; esterases, etc.) putatively involved in olfaction processes were identified. Quantitative PCR of candidate genes in male and female A. planipennis in different developmental stages revealed developmental- and sex-biased expression patterns. CONCLUSIONS AND SIGNIFICANCE: The antennal ESTs derived from A. planipennis constitute a rich molecular resource for the identification of genes potentially involved in the olfaction process of A. planipennis. These findings should help in understanding the processing of antennally-active compounds (e.g. 7-epi-sesquithujene) previously identified in this serious invasive pest.


Asunto(s)
Escarabajos/genética , Genes de Insecto/genética , Odorantes , Transcriptoma , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Escarabajos/fisiología , Señales (Psicología) , Femenino , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Datos de Secuencia Molecular , Receptores Odorantes/química , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Análisis de Secuencia , Conducta Sexual Animal
14.
Insect Biochem Mol Biol ; 42(10): 739-50, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22820710

RESUMEN

Isopentenyl diphosphate isomerase (IPPI) of the spruce budworm, Choristoneura fumiferana, and of the tobacco hornworm, Manduca sexta, was cloned and its catalytic properties assessed. In the presence of Mg(2+) or Mn(2+), the recombinant protein from C. fumiferana (CfIPPI) efficiently isomerized IPP to dimethylallyl diphosphate (DMAPP). While C. fumiferana IPPI transcript levels were evenly distributed in a wide variety of tissues, they were highly abundant in the corpora allata. Because IPPI plays an alternate role in lepidopteran juvenile hormone (JH) biosynthesis by catalyzing the isomerization of the homologous substrate, homoisopentenyl diphosphate (HIPP), the ability of CfIPPI to convert HIPP to homodimethylallyl diphosphate (HDMAPP) was also studied. As expected, HIPP isomerization was efficient and the formation of HDMAPP occurred, but the regiospecificity of the reaction was lower than previously found in M. sexta corpora allata homogenates and with purified Bombyx mori IPPI. Differences in inhibitory potency for several alkylated ammonium diphosphates and higher homologs of DMAPP were noted between CfIPPI and a vertebrate IPPI, suggesting that the lepidopteran enzyme has a larger active site cavity. To determine the structural factors responsible for homologous substrate coupling, site directed mutagenesis of several residues identified through sequence alignment and homology modeling analysis was performed. The results suggest that unlike other IPPIs, W216 (C. fumiferana numbering) works in concert with a tyrosine residue (Y105) to allow binding of larger substrates and to stabilize the high-energy intermediate formed during substrate isomerization.


Asunto(s)
Isomerasas de Doble Vínculo Carbono-Carbono/química , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Clonación Molecular , Proteínas de Insectos/genética , Manduca/enzimología , Mariposas Nocturnas/enzimología , Secuencia de Aminoácidos , Animales , Isomerasas de Doble Vínculo Carbono-Carbono/metabolismo , Hemiterpenos , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Cinética , Datos de Secuencia Molecular , Mariposas Nocturnas/química , Mariposas Nocturnas/genética , Alineación de Secuencia
15.
PLoS Pathog ; 6(5): e1000923, 2010 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-20523890

RESUMEN

Many thousands of endoparasitic wasp species are known to inject polydnavirus (PDV) particles into their caterpillar host during oviposition, causing immune and developmental dysfunctions that benefit the wasp larva. PDVs associated with braconid and ichneumonid wasps, bracoviruses and ichnoviruses respectively, both deliver multiple circular dsDNA molecules to the caterpillar. These molecules contain virulence genes but lack core genes typically involved in particle production. This is not completely unexpected given that no PDV replication takes place in the caterpillar. Particle production is confined to the wasp ovary where viral DNAs are generated from proviral copies maintained within the wasp genome. We recently showed that the genes involved in bracovirus particle production reside within the wasp genome and are related to nudiviruses. In the present work we characterized genes involved in ichnovirus particle production by analyzing the components of purified Hyposoter didymator Ichnovirus particles by LC-MS/MS and studying their organization in the wasp genome. Their products are conserved among ichnovirus-associated wasps and constitute a specific set of proteins in the virosphere. Strikingly, these genes are clustered in specialized regions of the wasp genome which are amplified along with proviral DNA during virus particle replication, but are not packaged in the particles. Clearly our results show that ichnoviruses and bracoviruses particles originated from different viral entities, thus providing an example of convergent evolution where two groups of wasps have independently domesticated viruses to deliver genes into their hosts.


Asunto(s)
Genoma de los Insectos/genética , Genoma Viral/genética , Polydnaviridae/genética , Avispas/genética , Avispas/virología , Animales , Evolución Molecular , Femenino , Familia de Multigenes/genética , Ovario/fisiología , Polydnaviridae/patogenicidad , Provirus/genética , Proteínas Virales/genética , Virión/genética , Virulencia
16.
J Gen Virol ; 90(Pt 6): 1505-1514, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19264643

RESUMEN

The endoparasitic wasp Tranosema rostrale transmits an ichnovirus to its lepidopteran host, Choristoneura fumiferana, during parasitization. As shown for other ichnoviruses, the segmented dsDNA genome of the T. rostrale ichnovirus (TrIV) features several multi-gene families, including the repeat element (rep) family, whose products display no known similarity to non-ichnovirus proteins, except for a homologue encoded by the genome of the Helicoverpa armigera granulovirus; their functions remain unknown. This study applied linear regression of efficiency analysis to real-time PCR quantification of transcript abundance for all 17 TrIV rep open reading frames (ORFs) in parasitized and virus-injected C. fumiferana larvae, as well as in T. rostrale ovaries and head-thorax complexes. Although transcripts were detected for most rep ORFs in infected caterpillars, two of them clearly outnumbered the others in whole larvae, with a tendency for levels to drop over time after infection. The genome segments bearing the three most highly expressed rep genes in parasitized caterpillars were present in higher proportions than other rep-bearing genome segments in TrIV DNA, suggesting a possible role for gene dosage in the regulation of transcription level. TrIV rep genes also showed important differences in the relative abundance of their transcripts in specific tissues (cuticular epithelium, the fat body, haemocytes and the midgut), implying tissue-specific roles for individual members of this gene family. Significantly, no rep transcripts were detected in T. rostrale head-thorax complexes, whereas some were abundant in ovaries. There, the transcription pattern was completely different from that observed in infected caterpillars, suggesting that some rep genes have wasp-specific functions.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Viral de la Expresión Génica , Genes Virales , Himenópteros/virología , Lepidópteros/virología , Polydnaviridae/fisiología , Secuencia de Aminoácidos , Animales , Femenino , Datos de Secuencia Molecular , ARN Mensajero/biosíntesis , ARN Viral/biosíntesis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Alineación de Secuencia
17.
FEBS Lett ; 582(13): 1928-34, 2008 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-18466770

RESUMEN

We report on the cDNA cloning and characterization of a novel short-chain isoprenyl diphosphate synthase from the aphid Myzus persicae. Of the three IPPS cDNAs we cloned, two yielded prenyltransferase activity following expression in Escherichia coli; these cDNAs encode identical proteins except for the presence, in one of them, of an N-terminal mitochondrial targeting peptide. Although the aphid enzyme was predicted to be a farnesyl diphosphate synthase by BLASTP analysis, rMpIPPS, when isopentenyl diphosphate and dimethylallyl diphosphate are supplied as substrates, typically generated geranyl diphosphate (C10) as its main product, along with significant quantities of farnesyl diphosphate (C15). Analysis of an MpIPPS homology model pointed to substitutions that could confer GPP/FPP synthase activity to the aphid enzyme.


Asunto(s)
Áfidos/enzimología , Dimetilaliltranstransferasa/metabolismo , Geraniltranstransferasa/metabolismo , Proteínas de Insectos/metabolismo , Animales , Áfidos/genética , Clonación Molecular , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/genética , Escherichia coli/genética , Geraniltranstransferasa/química , Geraniltranstransferasa/genética , Proteínas de Insectos/química , Proteínas de Insectos/genética , Conformación Proteica , Alineación de Secuencia
18.
Arch Insect Biochem Physiol ; 67(4): 188-201, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18348246

RESUMEN

Immune challenge in arthropods is frequently accompanied by melanization of the hemolymph, a reaction triggered by the activation of prophenoloxidase (PPO). Because their immature stages are spent inside the hemocoel of insect larvae, endoparasitoids have evolved strategies to escape or counter melanin formation. Very little molecular information is available on these endoparasitoid counterstrategies. We have sought to shed light on the inhibition of melanization in the spruce budworm, Choristoneura fumiferana, by the parasitic wasp Tranosema rostrale, by cloning two host PPO homologs and studying their transcriptional regulation after parasitization. The two polypeptides are encoded by transcripts of approximately 3.3 kb (for CfPPO1) and 3.0 kb (for CfPPO2) and possess structural features typical of other insect PPOs. While there appears to be a single CfPPO2 gene in the C. fumiferana genome, we detected three CfPPO1 mRNA variants displaying insertions/deletions in the 3' untranslated region, suggesting that there may be more than one CfPPO1 gene copy. Both CfPPO1 and CfPPO2 were expressed at high levels in C. fumiferana 6th instars, and parasitization by T. rostrale had no apparent impact on the level of their transcripts. Injection of a large dose (0.5 female-equivalent) of polydnavirus-laden calyx fluid extracted from T. rostrale, which is known to inhibit melanization in C. fumiferana, only caused a transient decrease in CfPPO1 and CfPPO2 transcript accumulation at 2-3 d post injection. It thus appears that transcriptional downregulation of C. fumiferana PPO by T. rostrale plays a minor role in the inhibition of hemolymph melanization in this host-parasitoid system.


Asunto(s)
Catecol Oxidasa/genética , Precursores Enzimáticos/genética , Regulación de la Expresión Génica/inmunología , Mariposas Nocturnas/enzimología , Mariposas Nocturnas/parasitología , Filogenia , Polydnaviridae , Avispas/inmunología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Southern Blotting , Clonación Molecular , Cartilla de ADN/genética , ADN Complementario/genética , Componentes del Gen , Datos de Secuencia Molecular , Mariposas Nocturnas/inmunología , Análisis de Secuencia de ADN
19.
Insect Biochem Mol Biol ; 37(11): 1198-206, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17916506

RESUMEN

Farnesyl diphosphate synthase (FPPS) of the dipteran Drosophila melanogaster has been cloned and its catalytic properties have been assessed. Analysis of the D. melanogaster genome and of ESTs indicates that FPPS is a single copy gene that produces two transcripts, which differ only by 5' extension. The cDNA of shorter and longer D. melanogaster FPPSs (DmFPPS-1a and DmFPPS-1b, respectively) were each subcloned into pET28a and expressed as an N-His6 fusion protein in BL21 E. coli cells. The DmFPPSs similarly catalyzed the coupling of the allylic substrates, GPP and DMAPP, with IPP, producing FPP as product. The longer protein was further characterized. The enzyme required divalent metal for activity, and was activated by 0.1% Triton X-100. Higher detergent concentration and the addition of glycerol, conditions that activate certain insect FPPSs, inhibited prenyl coupling by DmFPPS-1b. Although DmFPPS-1b does not efficiently couple homologous GPP compounds, homodimethylallyl diphosphate (HDMAPP), which is precursor to all homologous JH structures, was a reactive substrate.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Geraniltranstransferasa/metabolismo , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Clonación Molecular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Escherichia coli/genética , Etiquetas de Secuencia Expresada , Dosificación de Gen , Geraniltranstransferasa/química , Geraniltranstransferasa/genética , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de Proteína , Especificidad por Sustrato
20.
Insect Biochem Mol Biol ; 37(8): 819-28, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17628280

RESUMEN

Two forms of farnesyl diphosphate synthase (FPPS) from the spruce budworm, Choristoneura fumiferana, and one from the armyworm Pseudaletia unipuncta, have been cloned and their catalytic properties assessed. The type-2 FPPS of C. fumiferana (CfFPPS2) was efficient in the prenyl coupling of DMAPP or GPP with [(14)C]IPP, producing FPP as its final product; however, type-1 FPPSs (CfFPPS1, PuFPPS1, as well as Agrotis ipsilon FPPS1) were essentially inactive. A variety of purification methods was employed to purify the type-1 enzymes. Under mild chromatographic conditions, the isolated type-1 enzyme showed modest activity, but was apparently contaminated with endogenous prenyltransferase derived from the Escherichia coli host cells. Similarly, unpurified extracts of PuFPPS1 expressed in an E. coli FPPS-null mutant, had low FPPS activity. When equimolar amounts of homogenous CfFPPS1 and CfFPP2 were combined, a sharp synergistic enhancement of activity was observed, and the coupling of several homologous substrates, which are precursors to ethyl-branched JHs, was enhanced. Association between CfFPPS1 and CfFPPS2 was confirmed by both protein interaction chromatography and competitive ELISA. These data suggest that type-1 and type-2 FPPSs can form a heteromer, which may play a role in sesquiterpene biosynthesis, such as JH homologue formation, in moths.


Asunto(s)
Geraniltranstransferasa/metabolismo , Proteínas de Insectos/metabolismo , Lepidópteros/enzimología , Secuencia de Aminoácidos , Animales , Clonación Molecular , Escherichia coli/genética , Geraniltranstransferasa/química , Geraniltranstransferasa/aislamiento & purificación , Proteínas de Insectos/química , Proteínas de Insectos/aislamiento & purificación , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas , Proteínas Recombinantes de Fusión , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...