Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14571, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666909

RESUMEN

The emerging CdTe-BeTe semiconductor alloy that exhibits a dramatic mismatch in bond covalency and bond stiffness clarifying its vibrational-mechanical properties is used as a benchmark to test the limits of the percolation model (PM) worked out to explain the complex Raman spectra of the related but less contrasted Zn1-xBex-chalcogenides. The test is done by way of experiment ([Formula: see text]), combining Raman scattering with X-ray diffraction at high pressure, and ab initio calculations ([Formula: see text] ~ 0-0.5; [Formula: see text]~1). The (macroscopic) bulk modulus [Formula: see text] drops below the CdTe value on minor Be incorporation, at variance with a linear [Formula: see text] versus [Formula: see text] increase predicted ab initio, thus hinting at large anharmonic effects in the real crystal. Yet, no anomaly occurs at the (microscopic) bond scale as the regular bimodal PM-type Raman signal predicted ab initio for Be-Te in minority ([Formula: see text]~0, 0.5) is barely detected experimentally. At large Be content ([Formula: see text]~1), the same bimodal signal relaxes all the way down to inversion, an unprecedented case. However, specific pressure dependencies of the regular ([Formula: see text]~0, 0.5) and inverted ([Formula: see text]~1) Be-Te Raman doublets are in line with the predictions of the PM. Hence, the PM applies as such to Cd1-xBexTe without further refinement, albeit in a "relaxed" form. This enhances the model's validity as a generic descriptor of phonons in alloys.

2.
J Chem Phys ; 153(15): 154503, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33092356

RESUMEN

The phase diagram and melting behavior of the equimolar water-ammonia mixture have been investigated by Raman spectroscopy, x-ray diffraction, and visual observations from 295 K to 675 K and up to 9 GPa. Our results show non-congruent melting behavior of ammonia monohydrate (AMH) solid below 324 K and congruent melting at higher temperatures. The congruent melting is associated with the stability of a previously unobserved solid phase of AMH, which we named AMH-VII. Another, presumably water-rich, hydrate has also been detected in the range 4 GPa-7 GPa at 295 K on decompression of the high pressure disordered ionico-molecular alloy (DIMA) phase. Comparing our melting data to the literature suggests that non-congruent melting extends from 220 K to 324 K and that the solid phase that borders the fluid between 220 K and 270 K, called AMH-III, is not a proper phase of AMH but a solid solution of ammonia hemihydrate and ice. These results allow us to propose a revised and extended experimental phase diagram of AMH.

3.
Nat Commun ; 8(1): 1065, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29051485

RESUMEN

Water and ammonia are considered major components of the interiors of the giant icy planets and their satellites, which has motivated their exploration under high P-T conditions. Exotic forms of these pure ices have been revealed at extreme (~megabar) pressures, notably symmetric, ionic, and superionic phases. Here we report on an extensive experimental and computational study of the high-pressure properties of the ammonia monohydrate compound forming from an equimolar mixture of water and ammonia. Our experiments demonstrate that relatively mild pressure conditions (7.4 GPa at 300 K) are sufficient to transform ammonia monohydrate from a prototypical hydrogen-bonded crystal into a form where the standard molecular forms of water and ammonia coexist with their ionic counterparts, hydroxide (OH-) and ammonium [Formula: see text] ions. Using ab initio atomistic simulations, we explain this surprising coexistence of neutral/charged species as resulting from a topological frustration between local homonuclear and long-ranged heteronuclear ionisation mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA