Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 19(6): e1011462, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37339136

RESUMEN

Nematode parasites enter their definitive host at the developmentally arrested infectious larval stage (iL3), and the ligand-dependent nuclear receptor DAF-12 contributes to trigger their development to adulthood. Here, we characterized DAF-12 from the filarial nematodes Brugia malayi and Dirofilaria immitis and compared them with DAF-12 from the non-filarial nematodes Haemonchus contortus and Caenorhabditis elegans. Interestingly, Dim and BmaDAF-12 exhibit high sequence identity and share a striking higher sensitivity than Hco and CelDAF-12 to the natural ligands Δ4- and Δ7-dafachronic acids (DA). Moreover, sera from different mammalian species activated specifically Dim and BmaDAF-12 while the hormone-depleted sera failed to activate the filarial DAF-12. Accordingly, hormone-depleted serum delayed the commencement of development of D. immitis iL3 in vitro. Consistent with these observations, we show that spiking mouse charcoal stripped-serum with Δ4-DA at the concentration measured in normal mouse serum restores its capacity to activate DimDAF-12. This indicates that DA present in mammalian serum participate in filarial DAF-12 activation. Finally, analysis of publicly available RNA sequencing data from B. malayi showed that, at the time of infection, putative gene homologs of the DA synthesis pathways are coincidently downregulated. Altogether, our data suggest that filarial DAF-12 have evolved to specifically sense and survive in a host environment, which provides favorable conditions to quickly resume larval development. This work sheds new light on the regulation of filarial nematodes development while entering their definitive mammalian host and may open the route to novel therapies to treat filarial infections.


Asunto(s)
Proteínas de Caenorhabditis elegans , Proteínas del Helminto , Animales , Ratones , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Larva/metabolismo , Hormonas/metabolismo , Mamíferos , Receptores Citoplasmáticos y Nucleares/metabolismo
2.
Cancers (Basel) ; 12(10)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053669

RESUMEN

Dendrogenin A (DDA), a mammalian cholesterol metabolite with tumor suppressor properties, has recently been shown to exhibit strong anti-leukemic activity in acute myeloid leukemia (AML) cells by triggering lethal autophagy. Here, we demonstrated that DDA synergistically enhanced the toxicity of anthracyclines in AML cells but not in normal hematopoietic cells. Combination index of DDA treatment with either daunorubicin or idarubicin indicated a strong synergism in KG1a, KG1 and MV4-11 cell lines. This was confirmed in vivo using immunodeficient mice engrafted with MOLM-14 cells as well as in a panel of 20 genetically diverse AML patient samples. This effect was dependent on Liver X Receptor ß, a major target of DDA. Furthermore, DDA plus idarubicin strongly increased p53BP1 expression and the number of DNA strand breaks in alkaline comet assays as compared to idarubicin alone, whereas DDA alone was non-genotoxic. Mechanistically, DDA induced JNK phosphorylation and the inhibition of AKT phosphorylation, thereby maximizing DNA damage induced by idarubicin and decreasing DNA repair. This activated autophagic cell death machinery in AML cells. Overall, this study shows that the combination of DDA and idarubicin is highly promising and supports clinical trials of dendrogenin A in AML patients.

3.
EMBO J ; 38(16): e101284, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31294866

RESUMEN

The effectiveness of checkpoint kinase 1 (Chk1) inhibitors at killing cancer cells is considered to be fully dependent on their effect on DNA replication initiation. Chk1 inhibition boosts origin firing, presumably limiting the availability of nucleotides and in turn provoking the slowdown and subsequent collapse of forks, thus decreasing cell viability. Here we show that slow fork progression in Chk1-inhibited cells is not an indirect effect of excess new origin firing. Instead, fork slowdown results from the accumulation of replication barriers, whose bypass is impeded by CDK-dependent phosphorylation of the specialized DNA polymerase eta (Polη). Also in contrast to the linear model, the accumulation of DNA damage in Chk1-deficient cells depends on origin density but is largely independent of fork speed. Notwithstanding this, origin dysregulation contributes only mildly to the poor proliferation rates of Chk1-depleted cells. Moreover, elimination of replication barriers by downregulation of helicase components, but not their bypass by Polη, improves cell survival. Our results thus shed light on the molecular basis of the sensitivity of tumors to Chk1 inhibition.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Replicación del ADN , Técnicas de Silenciamiento del Gen/métodos , Neoplasias/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Daño del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Neoplasias/metabolismo , Fosforilación , Origen de Réplica
4.
PLoS Genet ; 14(7): e1007541, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30059501

RESUMEN

DNA replication stress (DRS) leads to the accumulation of stalled DNA replication forks leaving a fraction of genomic loci incompletely replicated, a source of chromosomal rearrangements during their partition in mitosis. MUS81 is known to limit the occurrence of chromosomal instability by processing these unresolved loci during mitosis. Here, we unveil that the endonucleases ARTEMIS and XPF-ERCC1 can also induce stalled DNA replication forks cleavage through non-epistatic pathways all along S and G2 phases of the cell cycle. We also showed that both nucleases are recruited to chromatin to promote replication fork restart. Finally, we found that rapid chromosomal breakage controlled by ARTEMIS and XPF is important to prevent mitotic segregation defects. Collectively, these results reveal that Rapid Replication Fork Breakage (RRFB) mediated by ARTEMIS and XPF in response to DRS contributes to DNA replication efficiency and limit chromosomal instability.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Fase G2/genética , Proteínas Nucleares/metabolismo , Fase S/genética , Línea Celular Tumoral , Segregación Cromosómica/fisiología , Roturas del ADN de Doble Cadena , Daño del ADN/fisiología , Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Fibroblastos , Inestabilidad Genómica/fisiología , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Proteínas Nucleares/genética , ARN Interferente Pequeño/metabolismo
5.
Stem Cells Transl Med ; 6(1): 68-76, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28170194

RESUMEN

Adipose-derived stem cells (ADSCs) have led to growing interest in cell-based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA-seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress-associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68-76.


Asunto(s)
Tejido Adiposo/citología , Carcinogénesis/patología , Replicación del ADN/efectos de los fármacos , ADN/metabolismo , Estrés Oxidativo/efectos de los fármacos , Oxígeno/farmacología , Células Madre/citología , Estrés Fisiológico , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cromosomas Humanos/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Mutación/genética , Células Madre/efectos de los fármacos , Células Madre/metabolismo
6.
J Biol Chem ; 290(7): 4110-7, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25552480

RESUMEN

SMARCAL1 catalyzes replication fork remodeling to maintain genome stability. It is recruited to replication forks via an interaction with replication protein A (RPA), the major ssDNA-binding protein in eukaryotic cells. In addition to directing its localization, RPA also activates SMARCAL1 on some fork substrates but inhibits it on others, thereby conferring substrate specificity to SMARCAL1 fork-remodeling reactions. We investigated the mechanism by which RPA regulates SMARCAL1. Our results indicate that although an interaction between SMARCAL1 and RPA is essential for SMARCAL1 activation, the location of the interacting surface on RPA is not. Counterintuitively, high-affinity DNA binding of RPA DNA-binding domain (DBD) A and DBD-B near the fork junction makes it easier for SMARCAL1 to remodel the fork, which requires removing RPA. We also found that RPA DBD-C and DBD-D are not required for SMARCAL1 regulation. Thus, the orientation of the high-affinity RPA DBDs at forks dictates SMARCAL1 substrate specificity.


Asunto(s)
Neoplasias Óseas/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , ADN de Cadena Simple/metabolismo , Osteosarcoma/metabolismo , Proteína de Replicación A/metabolismo , Secuencias de Aminoácidos , Neoplasias Óseas/genética , Daño del ADN , ADN Helicasas/genética , ADN de Cadena Simple/genética , Ensayo de Cambio de Movilidad Electroforética , Humanos , Osteosarcoma/genética , Unión Proteica , Proteína de Replicación A/genética , Especificidad por Sustrato , Células Tumorales Cultivadas
7.
Mol Cell Oncol ; 1(1): e29902, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-27308312

RESUMEN

To ensure high cell viability and genomic stability, cells have evolved two major mechanisms to deal with the constant challenge of DNA replication fork arrest during S phase of the cell cycle: (1) induction of the ataxia telangiectasia and Rad3-related (ATR) replication checkpoint mechanism, and (2) activation of a pathway that bypasses DNA damage and DNA with abnormal structure and is mediated by translesion synthesis (TLS) Y-family DNA polymerases. This review focuses on how DNA polymerase kappa (Pol κ), one of the most highly conserved TLS DNA polymerases, is involved in each of these pathways and thereby coordinates them to choreograph the response to a stalled replication fork. We also describe how loss of Pol κ regulation, which occurs frequently in human cancers, affects genomic stability and contributes to cancer development.

8.
Genes Dev ; 27(14): 1610-23, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23873943

RESUMEN

The DNA damage response kinase ataxia telangiectasia and Rad3-related (ATR) coordinates much of the cellular response to replication stress. The exact mechanisms by which ATR regulates DNA synthesis in conditions of replication stress are largely unknown, but this activity is critical for the viability and proliferation of cancer cells, making ATR a potential therapeutic target. Here we use selective ATR inhibitors to demonstrate that acute inhibition of ATR kinase activity yields rapid cell lethality, disrupts the timing of replication initiation, slows replication elongation, and induces fork collapse. We define the mechanism of this fork collapse, which includes SLX4-dependent cleavage yielding double-strand breaks and CtIP-dependent resection generating excess single-stranded template and nascent DNA strands. Our data suggest that the DNA substrates of these nucleases are generated at least in part by the SMARCAL1 DNA translocase. Properly regulated SMARCAL1 promotes stalled fork repair and restart; however, unregulated SMARCAL1 contributes to fork collapse when ATR is inactivated in both mammalian and Xenopus systems. ATR phosphorylates SMARCAL1 on S652, thereby limiting its fork regression activities and preventing aberrant fork processing. Thus, phosphorylation of SMARCAL1 is one mechanism by which ATR prevents fork collapse, promotes the completion of DNA replication, and maintains genome integrity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , ADN de Cadena Simple/genética , Activación Enzimática , Humanos , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Xenopus
9.
Cell Rep ; 3(6): 1958-69, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23746452

RESUMEN

Stalled replication forks are sources of genetic instability. Multiple fork-remodeling enzymes are recruited to stalled forks, but how they work to promote fork restart is poorly understood. By combining ensemble biochemical assays and single-molecule studies with magnetic tweezers, we show that SMARCAL1 branch migration and DNA-annealing activities are directed by the single-stranded DNA-binding protein RPA to selectively regress stalled replication forks caused by blockage to the leading-strand polymerase and to restore normal replication forks with a lagging-strand gap. We unveil the molecular mechanisms by which RPA enforces SMARCAL1 substrate preference. E. coli RecG acts similarly to SMARCAL1 in the presence of E. coli SSB, whereas the highly related human protein ZRANB3 has different substrate preferences. Our findings identify the important substrates of SMARCAL1 in fork repair, suggest that RecG and SMARCAL1 are functional orthologs, and provide a comprehensive model of fork repair by these DNA translocases.


Asunto(s)
ADN Helicasas/metabolismo , Reparación del ADN , Replicación del ADN , ADN/metabolismo , Animales , Baculoviridae/genética , ADN/biosíntesis , ADN/genética , Daño del ADN , ADN Helicasas/genética , Células HEK293 , Humanos , Insectos/citología , Insectos/virología , Unión Proteica , Origen de Réplica , Moldes Genéticos
10.
EMBO J ; 32(15): 2172-85, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23799366

RESUMEN

Formation of primed single-stranded DNA at stalled replication forks triggers activation of the replication checkpoint signalling cascade resulting in the ATR-mediated phosphorylation of the Chk1 protein kinase, thus preventing genomic instability. By using siRNA-mediated depletion in human cells and immunodepletion and reconstitution experiments in Xenopus egg extracts, we report that the Y-family translesion (TLS) DNA polymerase kappa (Pol κ) contributes to the replication checkpoint response and is required for recovery after replication stress. We found that Pol κ is implicated in the synthesis of short DNA intermediates at stalled forks, facilitating the recruitment of the 9-1-1 checkpoint clamp. Furthermore, we show that Pol κ interacts with the Rad9 subunit of the 9-1-1 complex. Finally, we show that this novel checkpoint function of Pol κ is required for the maintenance of genomic stability and cell proliferation in unstressed human cells.


Asunto(s)
Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Inestabilidad Genómica/fisiología , Proteínas Quinasas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , ADN Polimerasa Dirigida por ADN/genética , Células HeLa , Humanos , Proteínas Quinasas/genética , Proteínas de Xenopus/genética , Xenopus laevis
11.
PLoS One ; 8(5): e63149, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23671665

RESUMEN

SMARCAL1 is an ATPase in the SNF2 family that functions at damaged replication forks to promote their stability and restart. It acts by translocating on DNA to catalyze DNA strand annealing, branch migration, and fork regression. Many SNF2 enzymes work as motor subunits of large protein complexes. To determine if SMARCAL1 is also a member of a protein complex and to further understand how it functions in the replication stress response, we used a proteomics approach to identify interacting proteins. In addition to the previously characterized interaction with replication protein A (RPA), we found that SMARCAL1 forms complexes with several additional proteins including DNA-PKcs and the WRN helicase. SMARCAL1 and WRN co-localize at stalled replication forks independently of one another. The SMARCAL1 interaction with WRN is indirect and is mediated by RPA acting as a scaffold. SMARCAL1 and WRN act independently to prevent MUS81 cleavage of the stalled fork. Biochemical experiments indicate that both catalyze fork regression with SMARCAL1 acting more efficiently and independently of WRN. These data suggest that RPA brings a complex of SMARCAL1 and WRN to stalled forks, but that they may act in different pathways to promote fork repair and restart.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Exodesoxirribonucleasas/metabolismo , RecQ Helicasas/metabolismo , Proteína de Replicación A/metabolismo , Línea Celular Tumoral , ADN/química , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Espectrometría de Masas , Conformación de Ácido Nucleico , Unión Proteica , Proteómica/métodos , RecQ Helicasas/genética , Proteína de Replicación A/genética , Fase S/genética , Helicasa del Síndrome de Werner
12.
Genes Dev ; 26(2): 151-62, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22279047

RESUMEN

SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily A-like1) maintains genome integrity during DNA replication. Here we investigated its mechanism of action. We found that SMARCAL1 travels with elongating replication forks, and its absence leads to MUS81-dependent double-strand break formation. Binding to specific nucleic acid substrates activates SMARCAL1 activity in a reaction that requires its HARP2 (Hep-A-related protein 2) domain. Homology modeling indicates that the HARP domain is similar in structure to the DNA-binding domain of the PUR proteins. Limited proteolysis, small-angle X-ray scattering, and functional assays indicate that the core enzymatic unit consists of the HARP2 and ATPase domains that fold into a stable structure. Surprisingly, SMARCAL1 is capable of binding three-way and four-way Holliday junctions and model replication forks that lack a designed ssDNA region. Furthermore, SMARCAL1 remodels these DNA substrates by promoting branch migration and fork regression. SMARCAL1 mutations that cause Schimke immunoosseous dysplasia or that inactivate the HARP2 domain abrogate these activities. These results suggest that SMARCAL1 continuously surveys replication forks for damage. If damage is present, it remodels the fork to promote repair and restart. Failures in the process lead to activation of an alternative repair mechanism that depends on MUS81-catalyzed cleavage of the damaged fork.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN/fisiología , ADN Cruciforme/metabolismo , Inestabilidad Genómica/fisiología , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , ADN Helicasas/genética , Replicación del ADN/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Endonucleasas/metabolismo , Inestabilidad Genómica/genética , Células HEK293 , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Fase S
13.
Genes Dev ; 23(20): 2405-14, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19793861

RESUMEN

Mutations in SMARCAL1 (HARP) cause Schimke immunoosseous dysplasia (SIOD). The mechanistic basis for this disease is unknown. Using functional genomic screens, we identified SMARCAL1 as a genome maintenance protein. Silencing and overexpression of SMARCAL1 leads to activation of the DNA damage response during S phase in the absence of any genotoxic agent. SMARCAL1 contains a Replication protein A (RPA)-binding motif similar to that found in the replication stress response protein TIPIN (Timeless-Interacting Protein), which is both necessary and sufficient to target SMARCAL1 to stalled replication forks. RPA binding is critical for the cellular function of SMARCAL1; however, it is not necessary for the annealing helicase activity of SMARCAL1 in vitro. An SIOD-associated SMARCAL1 mutant fails to prevent replication-associated DNA damage from accumulating in cells in which endogenous SMARCAL1 is silenced. Ataxia-telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) phosphorylate SMARCAL1 in response to replication stress. Loss of SMARCAL1 activity causes increased RPA loading onto chromatin and persistent RPA phosphorylation after a transient exposure to replication stress. Furthermore, SMARCAL1-deficient cells are hypersensitive to replication stress agents. Thus, SMARCAL1 is a replication stress response protein, and the pleiotropic phenotypes of SIOD are at least partly due to defects in genome maintenance during DNA replication.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Inestabilidad Genómica , Línea Celular , Cromatina , Regulación de la Expresión Génica , Células HeLa , Humanos , Mutación , Osteocondrodisplasias/genética , Osteocondrodisplasias/fisiopatología , Fosforilación , Unión Proteica , Proteína de Replicación A/metabolismo
14.
Mol Carcinog ; 48(4): 369-78, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19117014

RESUMEN

Accurate DNA replication during S-phase is fundamental to maintain genome integrity. During this critical process, replication forks frequently encounter obstacles that impede their progression. While the regulatory pathways which act in response to exogenous replication stress are beginning to emerge, the mechanisms by which fork integrity is maintained at naturally occurring endogenous replication-impeding sequences remains obscure. Notably, little is known about how cells replicate through special chromosomal regions containing structured non-B DNA, for example, G4 quartets, known to hamper fork progression or trigger chromosomal rearrangements. Here, we have investigated the role in this process of the human translesion synthesis (TLS) DNA polymerases of the Y-family (pol eta, pol iota, and pol kappa), specialized enzymes known to synthesize DNA through DNA damage. We show that depletion by RNA interference of expression of the genes for Pol eta or Pol kappa, but not Pol iota, sensitizes U2OS cells treated with the G4-tetraplex interactive compound telomestatin and triggers double-strand breaks in HeLa cells harboring multiple copies of a G-rich sequence from the promoter region of the human c-MYC gene, chromosomally integrated as a transgene. Moreover, we found that downregulation of Pol kappa only raises the level of DSB in HeLa cells containing either one of two breakage hotspot structured DNA sequences in the chromosome, the major break region (Mbr) of BCL-2 gene and the GA rich region from the far right-hand end of the genome of the Kaposi Sarcoma associated Herpesvirus. These data suggest that naturally occurring DNA structures are physiological substrates of both pol eta and pol kappa. We discuss these data in the light of their downregulation in human cancers.


Asunto(s)
Neoplasias Colorrectales/genética , Replicación del ADN , ADN Polimerasa Dirigida por ADN/fisiología , G-Cuádruplex , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/secundario , Western Blotting , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Ensayo de Unidades Formadoras de Colonias , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Daño del ADN , Citometría de Flujo , Silenciador del Gen , Genes myc/genética , Células HeLa , Histonas/metabolismo , Humanos , Inhibidores de la Síntesis del Ácido Nucleico , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Oxazoles/farmacología , Regiones Promotoras Genéticas/genética , ADN Polimerasa iota
15.
Cell Cycle ; 6(4): 471-7, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17329970

RESUMEN

There is rising evidence that cancer development is associated from its earliest stages with DNA replication stress, a major source of spontaneous genomic instability. However, the origin of these replication defects has remained unclear. We have investigated the consequences of upregulating error-prone DNA polymerases (pol) beta and kappa on chromosomal DNA replication. These enzymes are misregulated in different types of cancers and induce major chromosomal instabilities when overexpressed at low levels. Here, we have used DNA combing to show that a moderate overexpression of pol beta or pol kappa is sufficient to impede replication fork progression and to promote the activation of additional replication origins. Interestingly, alterations of the normal replication program induced by excess error-prone polymerases were not detected by the replication checkpoint. We therefore propose that upregulation of error-prone DNA polymerases induces a checkpoint-blind replication stress that contributes to genomic instability and to cancer development.


Asunto(s)
ADN Polimerasa beta/metabolismo , Replicación del ADN/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Regulación hacia Arriba , Animales , Células CHO , Cricetinae , Cricetulus , ADN Polimerasa beta/genética , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Inestabilidad Genómica , Humanos , Modelos Genéticos , Fase S/genética , Fase S/fisiología
16.
Cancer Res ; 66(14): 7128-35, 2006 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-16854822

RESUMEN

The effects of cell adhesion on leukemia cell proliferation remain poorly documented and somehow controversial. In this work, we investigated the effect of adhesion to fibronectin on the proliferation of acute myeloid leukemia (AML) cell lines (U937 and KG1a) and CD34+ normal or leukemic primary cells. We observed an increased rate of proliferation of AML cells when adhered to fibronectin, concomitant with accelerated S-phase entry and accumulation of CDC25A. Conversely, normal CD34+ cell proliferation was decreased by adhesion to fibronectin with a concomitant drop in CDC25A expression. Importantly, we showed that both small interfering RNA (siRNA)-mediated CDC25A down-regulation and a recently developed CDC25 pharmacologic inhibitor impaired this adhesion-dependent proliferation, establishing a functional link between CDC25A accumulation and adhesion-dependent proliferation in leukemic cells. CDC25A accumulation was found only slightly dependent on transcriptional regulation and essentially due to modifications of the proteasomal degradation of the protein as shown using proteasome inhibitors and reverse transcription-PCR. Interestingly, CDC25A regulation was Chk1 dependent in these cells as suggested by siRNA-mediated down-regulation of this protein. Finally, we identified activation of the phosphatidylinositol 3-kinase/Akt pathway as an adhesion-dependent regulation mechanism of CDC25A protein expression. Altogether, our data show that in leukemic cells adhesion to fibronectin increases CDC25A expression through proteasome- and Chk1-dependent mechanisms, resulting in enhanced proliferation. They also suggest that these adhesion-dependent proliferation properties of hematopoietic cells may be modified during leukemogenesis.


Asunto(s)
Fosfatasas cdc25/biosíntesis , Enfermedad Aguda , Adhesión Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Fibronectinas/metabolismo , Células HL-60 , Humanos , Células Jurkat , Leucemia Mieloide/enzimología , Leucemia Mieloide/genética , Leucemia Mieloide/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Serina-Treonina Quinasas TOR , Células U937 , Regulación hacia Arriba , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...