Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Phys Chem A ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39155731

RESUMEN

O-H bond stretching vibrations in hydrogen-bonded complexes embedded into cryogenic neon matrices are subtly downshifted from cold gas phase reference wavenumbers. To the extent that this shift is systematic, it enables neon matrices as more universally applicable spectroscopic benchmark environments for quantum chemical predictions. Outliers are indicative of either an assignment problem in one of the two cryogenic experiments or they reveal interesting dynamics or structural effects on the complexes as a function of the environment. We compile 6 literature-known pairs of experimental data in jet and neon matrix expansions and realize a 6-fold expansion of that number through targeted matrix isolation and/or slit jet expansion spectroscopy presented in this work. In many cases, the neon matrix shift is less than the uncertainty of the currently best-performing blind quantum chemical predictions for the gas phase, but in specific cases, it may exceed the currently achievable theoretical accuracy. Some evidence for a positive correlation of the matrix shift with the hydrogen bond shift is found, similar to observations for helium nanodroplets. Outliers in particular for water acting as a donor are discussed, and in a few cases they call for a future reinvestigation. Substantial improvement in the correlation of the matrix shift with the hydrogen bond shift is achieved for ketone monohydrates by removing a vibrational resonance. New insights into nitrile hydration isomerism are obtained, and the linear OH stretching spectrum of the jet-cooled ammonia-water complex is presented for the first time. Vibrational spectroscopy in weakly perturbing solid rare gas quantum matrices for the benchmarking of gas phase theory and future explicit theoretical treatments of the quantum matrix environment to better understand the outliers are both encouraged.

2.
Phys Chem Chem Phys ; 25(33): 22089-22102, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37610422

RESUMEN

Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-cis-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.

3.
Phys Chem Chem Phys ; 24(19): 11442-11454, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35522931

RESUMEN

The procedure leading to the first HyDRA blind challenge for the prediction of water donor stretching vibrations in monohydrates of organic molecules is described. A training set of 10 monohydrates with experimentally known and published water donor vibrations is presented and a test set of 10 monohydrates with unknown or unpublished water donor vibrational wavenumbers is described together with relevant background literature. The rules for data submissions from computational chemistry groups are outlined and the planned publication procedure after the end of the blind challenge is discussed.


Asunto(s)
Hydra , Animales , Vibración , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA