Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Commun Biol ; 6(1): 903, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37666980

RESUMEN

Maintaining stable and transient quiescence in differentiated and stem cells, respectively, requires repression of the cell cycle. The plant RETINOBLASTOMA-RELATED (RBR) has been implicated in stem cell maintenance, presumably by forming repressor complexes with E2F transcription factors. Surprisingly we find that mutations in all three canonical E2Fs do not hinder the cell cycle, but similarly to RBR silencing, result in hyperplasia. Contrary to the growth arrest that occurs when exit from proliferation to differentiation is inhibited upon RBR silencing, the e2fabc mutant develops enlarged organs with supernumerary stem and differentiated cells as quiescence is compromised. While E2F, RBR and the M-phase regulatory MYB3Rs are part of the DREAM repressor complexes, and recruited to overlapping groups of targets, they regulate distinct sets of genes. Only the loss of E2Fs but not the MYB3Rs interferes with quiescence, which might be due to the ability of E2Fs to control both G1-S and some key G2-M targets. We conclude that collectively the three canonical E2Fs in complex with RBR have central roles in establishing cellular quiescence during organ development, leading to enhanced plant growth.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , División Celular , Ciclo Celular/genética , Desarrollo de la Planta
2.
Nat Commun ; 13(1): 1660, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35351906

RESUMEN

How cell size and number are determined during organ development remains a fundamental question in cell biology. Here, we identified a GRAS family transcription factor, called SCARECROW-LIKE28 (SCL28), with a critical role in determining cell size in Arabidopsis. SCL28 is part of a transcriptional regulatory network downstream of the central MYB3Rs that regulate G2 to M phase cell cycle transition. We show that SCL28 forms a dimer with the AP2-type transcription factor, AtSMOS1, which defines the specificity for promoter binding and directly activates transcription of a specific set of SIAMESE-RELATED (SMR) family genes, encoding plant-specific inhibitors of cyclin-dependent kinases and thus inhibiting cell cycle progression at G2 and promoting the onset of endoreplication. Through this dose-dependent regulation of SMR transcription, SCL28 quantitatively sets the balance between cell size and number without dramatically changing final organ size. We propose that this hierarchical transcriptional network constitutes a cell cycle regulatory mechanism that allows to adjust cell size and number to attain robust organ growth.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Tamaño de la Célula , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo
3.
Life Sci Alliance ; 4(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34583930

RESUMEN

The DNA of all organisms is constantly damaged by physiological processes and environmental conditions. Upon persistent damage, plant growth and cell proliferation are reduced. Based on previous findings that RBR1, the only Arabidopsis homolog of the mammalian tumor suppressor gene retinoblastoma, plays a key role in the DNA damage response in plants, we unravel here the network of RBR1 interactors under DNA stress conditions. This led to the identification of homologs of every DREAM component in Arabidopsis, including previously not recognized homologs of LIN52. Interestingly, we also discovered NAC044, a mediator of DNA damage response in plants and close homolog of the major DNA damage regulator SOG1, to directly interact with RBR1 and the DREAM component LIN37B. Consistently, not only mutants in NAC044 but also the double mutant of the two LIN37 homologs and mutants for the DREAM component E2FB showed reduced sensitivities to DNA-damaging conditions. Our work indicates the existence of multiple DREAM complexes that work in conjunction with NAC044 to mediate growth arrest after DNA damage.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Daño del ADN/genética , Factores de Transcripción E2F/metabolismo , Proteínas Mutantes/metabolismo , Transducción de Señal/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Puntos de Control del Ciclo Celular/genética , Reparación del ADN/genética , Factores de Transcripción E2F/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Mutantes/genética , Mutación , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Transactivadores/genética
4.
Genome Biol ; 22(1): 151, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975629

RESUMEN

BACKGROUND: The developmental gradient in monocot leaves has been exploited to uncover leaf developmental gene expression programs and chloroplast biogenesis processes. However, the relationship between the two is barely understood, which limits the value of transcriptome data to understand the process of chloroplast development. RESULTS: Taking advantage of the developmental gradient in the bread wheat leaf, we provide a simultaneous quantitative analysis for the development of mesophyll cells and of chloroplasts as a cellular compartment. This allows us to generate the first biologically-informed gene expression map of this leaf, with the entire developmental gradient from meristematic to fully differentiated cells captured. We show that the first phase of plastid development begins with organelle proliferation, which extends well beyond cell proliferation, and continues with the establishment and then the build-up of the plastid genetic machinery. The second phase is marked by the development of photosynthetic chloroplasts which occupy the available cellular space. Using a network reconstruction algorithm, we predict that known chloroplast gene expression regulators are differentially involved across those developmental stages. CONCLUSIONS: Our analysis generates both the first wheat leaf transcriptional map and one of the most comprehensive descriptions to date of the developmental history of chloroplasts in higher plants. It reveals functionally distinct plastid and chloroplast development stages, identifies processes occurring in each of them, and highlights our very limited knowledge of the earliest drivers of plastid biogenesis, while providing a basis for their future identification.


Asunto(s)
Cloroplastos/genética , Perfilación de la Expresión Génica , Fotosíntesis/genética , Hojas de la Planta/genética , Triticum/genética , Proliferación Celular/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genoma de Plastidios , Hojas de la Planta/citología , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Biosíntesis de Proteínas/genética , Triticum/citología
5.
Plant Physiol ; 182(2): 919-932, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31818906

RESUMEN

The ErbB-3 BINDING PROTEIN 1 (EBP1) drives growth, but the mechanism of how it acts in plants is little understood. Here, we show that EBP1 expression and protein abundance in Arabidopsis (Arabidopsis thaliana) are predominantly confined to meristematic cells and are induced by sucrose and partially dependent on TARGET OF RAPAMYCIN (TOR) kinase activity. Consistent with being downstream of TOR, silencing of EBP1 restrains, while overexpression promotes, root growth, mostly under sucrose-limiting conditions. Inducible overexpression of RETINOBLASTOMA RELATED (RBR), a sugar-dependent transcriptional repressor of cell proliferation, depletes meristematic activity and causes precocious differentiation, which is attenuated by EBP1. To understand the molecular mechanism, we searched for EBP1- and RBR-interacting proteins by affinity purification and mass spectrometry. In line with the double-stranded RNA-binding activity of EBP1 in human (Homo sapiens) cells, the overwhelming majority of EBP1 interactors are part of ribonucleoprotein complexes regulating many aspects of protein synthesis, including ribosome biogenesis and mRNA translation. We confirmed that EBP1 associates with ribosomes and that EBP1 silencing hinders ribosomal RNA processing. We revealed that RBR also interacts with a set of EBP1-associated nucleolar proteins as well as factors that function in protein translation. This suggests EBP1 and RBR act antagonistically on common processes that determine the capacity for translation to tune meristematic activity in relation to available resources.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Raíces de Plantas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciación Celular/genética , Cromatografía de Afinidad , Espectrometría de Masas , Meristema/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Raíces de Plantas/genética , Unión Proteica , Biosíntesis de Proteínas/genética , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Sacarosa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Plant Physiol ; 182(1): 518-533, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31694902

RESUMEN

Cell cycle entry and quiescence are regulated by the E2F transcription factors in association with RETINOBLASTOMA-RELATED (RBR). E2FB is considered to be a transcriptional activator of cell cycle genes, but its function during development remains poorly understood. Here, by studying E2FB-RBR interaction, E2F target gene expression, and epidermal cell number and shape in e2fb mutant and overexpression lines during leaf development in Arabidopsis (Arabidopsis thaliana), we show that E2FB in association with RBR plays a role in the inhibition of cell proliferation to establish quiescence. In young leaves, both RBR and E2FB are abundant and form a repressor complex that is reinforced by an autoregulatory loop. Increased E2FB levels, either by expression driven by its own promoter or ectopically together with DIMERIZATION PARTNER A, further elevate the amount of this repressor complex, leading to reduced leaf cell number. Cell overproliferation in e2fb mutants and in plants overexpressing a truncated form of E2FB lacking the RBR binding domain strongly suggested that RBR repression specifically acts through E2FB. The increased number of small cells below the guard cells and of fully developed stomata indicated that meristemoids preferentially hyperproliferate. As leaf development progresses and cells differentiate, the amount of RBR and E2FB gradually declined. At this stage, elevation of E2FB level can overcome RBR repression, leading to reactivation of cell division in pavement cells. In summary, E2FB in association with RBR is central to regulating cell proliferation during organ development to determine final leaf cell number.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción E2F/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción E2F/genética , Regulación de la Expresión Génica de las Plantas/genética , Mutación/genética , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética
7.
J Exp Bot ; 71(4): 1265-1277, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31693141

RESUMEN

γ-Tubulin is associated with microtubule nucleation, but evidence is accumulating in eukaryotes that it also functions in nuclear processes and in cell division control independently of its canonical role. We found that in Arabidopsis thaliana, γ-tubulin interacts specifically with E2FA, E2FB, and E2FC transcription factors both in vitro and in vivo. The interaction of γ-tubulin with the E2Fs is not reduced in the presence of their dimerization partners (DPs) and, in agreement, we found that γ-tubulin interaction with E2Fs does not require the dimerization domain. γ-Tubulin associates with the promoters of E2F-regulated cell cycle genes in an E2F-dependent manner, probably in complex with the E2F-DP heterodimer. The up-regulation of E2F target genes PCNA, ORC2, CDKB1;1, and CCS52A under γ-tubulin silencing suggests a repressive function for γ-tubulin at G1/S and G2/M transitions, and the endocycle, which is consistent with an excess of cell division in some cells and enhanced endoreduplication in others in the shoot and young leaves of γ-tubulin RNAi plants. Altogether, our data show ternary interaction of γ-tubulin with the E2F-DP heterodimer and suggest a repressive role for γ-tubulin with E2Fs in controlling mitotic activity and endoreduplication during plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción E2F , Tubulina (Proteína) , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ciclo Celular , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas , Tubulina (Proteína)/genética
8.
Development ; 146(22)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31666236

RESUMEN

The E2F transcription factors and the RETINOBLASTOMA-RELATED repressor protein are principal regulators coordinating cell proliferation with differentiation, but their role during seed development is little understood. We show that in fully developed Arabidopsis thaliana embryos, cell number was not affected either in single or double mutants for the activator-type E2FA and E2FB Accordingly, these E2Fs are only partially required for the expression of cell cycle genes. In contrast, the expression of key seed maturation genes LEAFY COTYLEDON 1/2 (LEC1/2), ABSCISIC ACID INSENSITIVE 3, FUSCA 3 and WRINKLED 1 is upregulated in the e2fab double mutant embryo. In accordance, E2FA directly regulates LEC2, and mutation at the consensus E2F-binding site in the LEC2 promoter de-represses its activity during the proliferative stage of seed development. In addition, the major seed storage reserve proteins, 12S globulin and 2S albumin, became prematurely accumulated at the proliferating phase of seed development in the e2fab double mutant. Our findings reveal a repressor function of the activator E2Fs to restrict the seed maturation programme until the cell proliferation phase is completed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Factores de Transcripción E2F/metabolismo , Semillas/crecimiento & desarrollo , Albúminas/metabolismo , Sitios de Unión , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Ciclo Celular , Proliferación Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mutación , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo
9.
Front Plant Sci ; 10: 202, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30891050

RESUMEN

Plant growth flexibly adapts to environmental conditions. Growth initiation itself may be conditional to a suitable environment, while the most common response of plants to adverse conditions is growth inhibition. Most of our understanding about environmental growth inhibition comes from studies on various plant hormones, while less is known about the signaling mechanisms involved. The mitogen-activated protein kinase (MAPK) cascades are central signal transduction pathways in all eukaryotes and their roles in plant stress responses is well-established, while increasing evidence points to their involvement in hormonal and developmental processes. Here we show that the MKK7-MPK6 module is a suppressor of meristem activity using genetic approaches. Shoot apical meristem activation during light-induced de-etiolation is accelerated in mpk6 and mkk7 seedlings, whereas constitutive or induced overexpression of MKK7 results in meristem defects or collapse, both in the shoot and the root apical meristems. These results underscore the role of stress-activated MAPK signaling in regulating growth responses at the whole plant level, which may be an important regulatory mechanism underlying the environmental plasticity of plant development.

10.
J Exp Bot ; 70(8): 2275-2284, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30918972

RESUMEN

Cells need to ensure a sufficient nutrient and energy supply before committing to proliferate. In response to positive mitogenic signals, such as light, sugar availability, and hormones, the target of rapamycin (TOR) signalling pathway promotes cell growth that connects to the entry and passage through the cell division cycle via multiple signalling mechanisms. Here, we summarize current understanding of cell cycle regulation by the RBR-E2F regulatory hub and the DREAM-like complexes, and highlight possible functional relationships between these regulators and TOR signalling. A genetic screen recently uncovered a downstream signalling component to TOR that regulates cell proliferation, YAK1, a member of the dual specificity tyrosine phosphorylation-regulated kinase (DYRK) family. YAK1 activates the plant-specific SIAMESE-RELATED (SMR) cyclin-dependent kinase inhibitors and therefore could be important to regulate both the CDKA-RBR-E2F pathway to control the G1/S transition and the mitotic CDKB1;1 to control the G2/M transition. TOR, as a master regulator of both protein synthesis-driven cell growth and cell proliferation is also central for cell size homeostasis. We conclude the review by briefly highlighting the potential applications of combining TOR and cell cycle knowledge in the context of ensuring future food security.


Asunto(s)
Puntos de Control del Ciclo Celular , Factores de Transcripción E2F/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ciclo Celular/fisiología , Proliferación Celular , Tamaño de la Célula , Factores de Transcripción E2F/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Meristema/crecimiento & desarrollo , Desarrollo de la Planta/fisiología , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
11.
Trends Plant Sci ; 23(10): 918-932, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30143312

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways are versatile signaling mechanisms in all eukaryotes. Their signaling outputs are defined by the protein substrates phosphorylated by MAPKs. An expanding list of substrates has been identified by high-throughput screens and targeted approaches in plants. The majority of these are phosphorylated by MPK3/6, and a few by MPK4, which are the best-characterized plant MAPKs, participating in the regulation of numerous biological processes. The identified substrates clearly represent the functional diversity of MAPKs: they are associated with pathogen defense, abiotic stress responses, ethylene signaling, and various developmental functions. Understanding their outputs is integral to unraveling the complex regulatory mechanisms of MAPK cascades. We review here methodological approaches and provide an overview of known MAPK substrates.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Botánica/métodos
12.
FEBS Lett ; 592(1): 89-102, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29197077

RESUMEN

Plant growth flexibly adapts to environmental conditions, implying cross-talk between environmental signalling and developmental regulation. Here, we show that the PIN auxin efflux carrier family possesses three highly conserved putative mitogen-activated protein kinase (MAPK) sites adjacent to the phosphorylation sites of the well-characterised AGC kinase PINOID, which regulates the polar localisation of PINs and directional auxin transport, thereby underpinning organ growth. The conserved sites of PIN1 are phosphorylated in vitro by two environmentally activated MAPKs, MPK4 and MPK6. In contrast to AGC kinases, MAPK-mediated phosphorylation of PIN1 at adjacent sites leads to a partial loss of the plasma membrane localisation of PIN1. MAPK-mediated modulation of PIN trafficking may participate in environmental adjustment of plant growth.


Asunto(s)
Evolución Molecular , Ácidos Indolacéticos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Sitios de Unión/genética , Secuencia Conservada , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Fosforilación , Desarrollo de la Planta , Raíces de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Plantas Modificadas Genéticamente , Protoplastos/metabolismo
13.
Plant Physiol ; 176(2): 1365-1381, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29284741

RESUMEN

The development of leaf primordia is subject to light control of meristematic activity. Light regulates the expression of thousands of genes with roles in cell proliferation, organ development, and differentiation of photosynthetic cells. Previous work has highlighted roles for hormone homeostasis and the energy-dependent Target of Rapamycin (TOR) kinase in meristematic activity, yet a picture of how these two regulatory mechanisms depend on light perception and interact with each other has yet to emerge. Their relevance beyond leaf initiation also is unclear. Here, we report the discovery that the dark-arrested meristematic region of Arabidopsis (Arabidopsis thaliana) experiences a local energy deprivation state and confirm previous findings that the PIN1 auxin transporter is diffusely localized in the dark. Light triggers a rapid removal of the starvation state and the establishment of PIN1 polar membrane localization consistent with auxin export, both preceding the induction of cell cycle- and cytoplasmic growth-associated genes. We demonstrate that shoot meristematic activity can occur in the dark through the manipulation of auxin and cytokinin activity as well as through the activation of energy signaling, both targets of photomorphogenesis action, but the organ developmental outcomes differ: while TOR-dependent energy signals alone stimulate cell proliferation, the development of a normal leaf lamina requires photomorphogenesis-like hormonal responses. We further show that energy signaling adjusts the extent of cell cycle activity and growth of young leaves non-cellautonomously to available photosynthates and leads to organs constituted of a greater number of cells developing under higher irradiance. This makes energy signaling perhaps the most important biomass growth determinant under natural, unstressed conditions.


Asunto(s)
Arabidopsis/fisiología , Meristema/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/citología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Proliferación Celular , Citocininas/metabolismo , Oscuridad , Metabolismo Energético , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Luz , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Meristema/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células Vegetales/fisiología , Hojas de la Planta/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/fisiología , Plantones/fisiología , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
EMBO J ; 36(9): 1261-1278, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28320736

RESUMEN

The rapidly proliferating cells in plant meristems must be protected from genome damage. Here, we show that the regulatory role of the Arabidopsis RETINOBLASTOMA RELATED (RBR) in cell proliferation can be separated from a novel function in safeguarding genome integrity. Upon DNA damage, RBR and its binding partner E2FA are recruited to heterochromatic γH2AX-labelled DNA damage foci in an ATM- and ATR-dependent manner. These γH2AX-labelled DNA lesions are more dispersedly occupied by the conserved repair protein, AtBRCA1, which can also co-localise with RBR foci. RBR and AtBRCA1 physically interact in vitro and in planta Genetic interaction between the RBR-silenced amiRBR and Atbrca1 mutants suggests that RBR and AtBRCA1 may function together in maintaining genome integrity. Together with E2FA, RBR is directly involved in the transcriptional DNA damage response as well as in the cell death pathway that is independent of SOG1, the plant functional analogue of p53. Thus, plant homologs and analogues of major mammalian tumour suppressor proteins form a regulatory network that coordinates cell proliferation with cell and genome integrity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Puntos de Control del Ciclo Celular , Daño del ADN , Reparación del ADN , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN de Plantas/metabolismo
15.
Curr Opin Plant Biol ; 34: 100-106, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27816815

RESUMEN

Cell cycle phase specific oscillation of gene transcription has long been recognized as an underlying principle for ordered processes during cell proliferation. The G1/S-specific and G2/M-specific cohorts of genes in plants are regulated by the E2F and the MYB3R transcription factors. Mutant analysis suggests that activator E2F functions might not be fully required for cell cycle entry. In contrast, the two activator-type MYB3Rs are part of positive feedback loops to drive the burst of mitotic gene expression, which is necessary at least to accomplish cytokinesis. Repressor MYB3Rs act outside the mitotic time window during cell cycle progression, and are important for the shutdown of mitotic genes to impose quiescence in mature organs. The two distinct classes of E2Fs and MYB3Rs together with the RETINOBLATOMA RELATED are part of multiprotein complexes that may be evolutionary related to what is known as DREAM complex in animals. In plants, there are multiple such complexes with distinct compositions and functions that may be involved in the coordinated cell cycle and developmental regulation of E2F targets and mitotic genes.


Asunto(s)
Ciclo Celular/genética , Células Vegetales/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Transcription ; 6(5): 106-11, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26556011

RESUMEN

Plant MYB3R transcription factors, homologous to Myb oncoproteins, regulate the genes expressed at G2 and M phases in the cell cycle. Recent studies showed that MYB3Rs constitute multiprotein complexes that may correspond to animal complexes known as DREAM or dREAM. Discovery of the putative homologous complex in plants uncovered their significant varieties in structure, function, dynamics, and heterogeneity, providing insight into conserved and diversified aspects of cell cycle-regulated gene transcription.


Asunto(s)
Arabidopsis/metabolismo , Puntos de Control del Ciclo Celular , Transactivadores/metabolismo , Transcripción Genética , Arabidopsis/química , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejos Multiproteicos/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Transactivadores/química
17.
New Phytol ; 207(4): 1061-74, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26061286

RESUMEN

Stress-activated plant mitogen-activated protein (MAP) kinase pathways play roles in growth adaptation to the environment by modulating cell division through cytoskeletal regulation, but the mechanisms are poorly understood. We performed protein interaction and phosphorylation experiments with cytoskeletal proteins, mass spectrometric identification of MPK6 complexes and immunofluorescence analyses of the microtubular cytoskeleton of mitotic cells using wild-type, mpk6-2 mutant and plants overexpressing the MAP kinase-inactivating phosphatase, AP2C3. We showed that MPK6 interacted with γ-tubulin and co-sedimented with plant microtubules polymerized in vitro. It was the active form of MAP kinase that was enriched with microtubules and followed similar dynamics to γ-tubulin, moving from poles to midzone during the anaphase-to-telophase transition. We found a novel substrate for MPK6, the microtubule plus end protein, EB1c. The mpk6-2 mutant was sensitive to 3-nitro-l-tyrosine (NO2 -Tyr) treatment with respect to mitotic abnormalities, and root cells overexpressing AP2C3 showed defects in chromosome segregation and spindle orientation. Our data suggest that the active form of MAP kinase interacts with γ-tubulin on specific subsets of mitotic microtubules during late mitosis. MPK6 phosphorylates EB1c, but not EB1a, and has a role in maintaining regular planes of cell division under stress conditions.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Huso Acromático/metabolismo , Estrés Fisiológico , Tubulina (Proteína)/metabolismo , Anafase/efectos de los fármacos , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Butadienos/farmacología , Proliferación Celular/efectos de los fármacos , Segregación Cromosómica/efectos de los fármacos , Citocinesis/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Meristema/citología , Meristema/efectos de los fármacos , Meristema/metabolismo , Microtúbulos/efectos de los fármacos , Nitrilos/farmacología , Nitrosación/efectos de los fármacos , Fosforilación/efectos de los fármacos , Células Vegetales/efectos de los fármacos , Células Vegetales/metabolismo , Huso Acromático/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Telofase/efectos de los fármacos , Tirosina/análogos & derivados , Tirosina/farmacología
18.
EMBO J ; 34(15): 1992-2007, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26069325

RESUMEN

In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size.


Asunto(s)
Arabidopsis/fisiología , Ciclo Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Organogénesis/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Inmunoprecipitación de Cromatina , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Espectrometría de Masas , Análisis por Micromatrices , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN
19.
Plant J ; 82(5): 772-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25847219

RESUMEN

The ethylene response factor VII (ERF-VII) transcription factor RELATED TO APETALA2.12 (RAP2.12) was previously identified as an activator of the ALCOHOL DEHYDROGENASE1 promoter::luciferase (ADH1-LUC) reporter gene. Here we show that overexpression of RAP2.12 and its homologues RAP2.2 and RAP2.3 sustains ABA-mediated activation of ADH1 and activates hypoxia marker genes under both anoxic and normoxic conditions. Inducible expression of all three RAP2s conferred tolerance to anoxia, oxidative and osmotic stresses, and enhanced the sensitivity to abscisic acid (ABA). Consistently, the rap2.12-2 rap2.3-1 double mutant showed hypersensitivity to both submergence and osmotic stress. These findings suggest that the three ERF-VII-type transcription factors play roles in tolerance to multiple stresses that sequentially occur during and after submergence in Arabidopsis. Oxygen-dependent degradation of RAP2.12 was previously shown to be mediated by the N-end rule pathway. During submergence the RAP2.12, RAP2.2 and RAP2.3 are stabilized and accumulates in the nucleus affecting the transcription of stress response genes. We conclude that the stabilized RAP2 transcription factors can prolong the ABA-mediated activation of a subset of osmotic responsive genes (e.g. ADH1). We also show that RAP2.12 protein level is affected by the REALLY INTERESTING GENE (RING) domain containing SEVEN IN ABSENTIA of Arabidopsis thaliana 2 (SINAT2). Silencing of SINAT1/2 genes leads to enhanced RAP2.12 abundance independently of the presence or absence of its N-terminal degron. Taken together, our results suggest that RAP2.12 and its homologues RAP2.2 and RAP2.3 act redundantly in multiple stress responses. Alternative protein degradation pathways may provide inputs to the RAP2 transcription factors for the distinct stresses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Estrés Oxidativo , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Aclimatación , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Presión Osmótica , Oxígeno/metabolismo , Plantas Modificadas Genéticamente , Estructura Terciaria de Proteína , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo
20.
Biochem J ; 467(1): 167-75, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25646663

RESUMEN

Mitogen-activated protein kinases (MAPKs) are part of conserved signal transduction modules in eukaryotes that are typically organized into three-tiered kinase cascades. The activation of MAPKs in these pathways is fully dependent on the bisphosphorylation of the TXY motif in the T-loop by the pertinent dual-specificity MAPK kinases (MAPKKs). The Arabidopsis mitogen-activated protein kinase 9 (AtMPK9) is a member of an atypical class of MAPKs. Representatives of this MAPK family have a TDY phosphoacceptor site, a long C-terminal extension and lack the common MAPKK-binding docking motif. In the present paper, we describe multiple in vitro and in vivo data showing that AtMPK9 is activated independently of any upstream MAPKKs but rather is activated through autophosphorylation. We mapped the autophosphorylation sites by MS to the TDY motif and to the C-terminal regulatory extension. We mutated the phosphoacceptor sites on the TDY, which confirmed the requirement for bisphorylation at this site for full kinase activity. Next, we demonstrated that the kinase-inactive mutant form of AtMPK9 is not trans-phosphorylated on the TDY site when mixed with an active AtMPK9, implying that the mechanism of the autocatalytic phosphorylation is intramolecular. Furthermore, we show that in vivo AtMPK9 is activated by salt and is regulated by okadaic acid-sensitive phosphatases. We conclude that the plant AtMPK9 shows similarities to the mammalian atypical MAPKs, such as extracellular-signal-regulated kinase (ERK) 7/8, in terms of an MAPKK-independent activation mechanism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Treonina/química , Tirosina/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biocatálisis , Células Cultivadas , Activación Enzimática , Proteínas Quinasas Activadas por Mitógenos/química , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Fosforilación , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...