Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Earth Planets Space ; 74(1): 118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35915663

RESUMEN

The deviation of Universal Time from atomic time, expressed as UT1-UTC, reflects the irregularities of the Earth rotation speed and is key to precise geodetic applications which depend on the transformation between celestial and terrestrial reference frames. A rapidly varying quantity such as UT1-UTC demands observation scenarios enabling fast delivery of good results. These criteria are currently met only by the Very Long Baseline Interferometry (VLBI) Intensive sessions. Due to stringent requirements of a fast UT1-UTC turnaround, the observations are limited to a few baselines and a duration of one hour. Hence, the estimation of UT1-UTC from Intensives is liable to constraints and prone to errors introduced by inaccurate a priori information. One aspect in this context is that the regularly operated Intensive VLBI sessions organised by the International VLBI Service for Geodesy and Astrometry solely use stations in the northern hemisphere. Any potential systematic errors due to this northern hemisphere dominated geometry are so far unknown. Besides the general need for stimulating global geodetic measurements with southern observatories, this served as a powerful motivation to launch the SI (Southern Intensive) program in 2020. The SI sessions are observed using three VLBI antennas in the southern hemisphere: Ht (South Africa), Hb (Tasmania) and Yg (Western Australia). On the basis of UT1-UTC results from 53 sessions observed throughout 2020 and 2021, we demonstrate the competitiveness of the SI with routinely operated Intensive sessions in terms of operations and UT1-UTC accuracy. The UT1-UTC values of the SI reach an average agreement of 32 µs in terms of weighted standard deviation when compared with the conventional Intensives results of five independent analysis centers and of 27 µs compared with the 14C04 series. The mean scatter of all solutions of the considered northern hemisphere Intensives with respect to C04 is at a comparable level of 29 µs. The quality of the results is only slightly degraded if just the baseline HtHb is evaluated. In combination with the e-transfer capabilities from Ht to Hb, this facilitates continuation of the SI by ensuring rapid service UT1-UTC provision.

2.
J Geod ; 88(5): 449-461, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26512160

RESUMEN

In connection with the work for the next generation VLBI2010 Global Observing System (VGOS) of the International VLBI Service for Geodesy and Astrometry, a new scheduling package (Vie_Sched) has been developed at the Vienna University of Technology as a part of the Vienna VLBI Software. In addition to the classical station-based approach it is equipped with a new scheduling strategy based on the radio sources to be observed. We introduce different configurations of source-based scheduling options and investigate the implications on present and future VLBI2010 geodetic schedules. By comparison to existing VLBI schedules of the continuous campaign CONT11, we find that the source-based approach with two sources has a performance similar to the station-based approach in terms of number of observations, sky coverage, and geodetic parameters. For an artificial 16 station VLBI2010 network, the source-based approach with four sources provides an improved distribution of source observations on the celestial sphere. Monte Carlo simulations yield slightly better repeatabilities of station coordinates with the source-based approach with two sources or four sources than the classical strategy. The new VLBI scheduling software with its alternative scheduling strategy offers a promising option with respect to applications of the VGOS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA