Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; 550: 132-136, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29729279

RESUMEN

The most widely recognized activity of the large family of the metalloenzyme carbonic anhydrases (CAs) is the diffusion-controlled hydration of CO2 to HCO3- and one proton, and the less rapid dehydration of HCO3- to CO2: CO2 + H2O ⇆ HCO3- + H+. CAs also catalyze the reaction of water with other electrophiles such as aromatic esters, sulfates and phosphates, thus contributing to lending to CAs esterase, sulfatase and phosphatase activity, respectively. Renal CAII and CAIV are involved in the reabsorption of nitrite, the autoxidation product of the signalling molecule nitric oxide (NO): 4 NO + O2 + 2 H2O → 4 ONO- + 4 H+. Bovine and human CAII and CAIV have been reported to exert nitrite reductase and nitrous anhydride activity: 2 NO2- + 2 H+ ⇆ [2 HONO] ⇆ N2O3 + H2O. In the presence of L-cysteine, NO may be formed. In the literature, these issues are controversial, mainly due to analytical shortcomings, i.e., the inability to detect authentic HONO and N2O3. Here, we present a gas chromatography-mass spectrometry (GC-MS) assay to unambiguously detect and quantify the nitrous anhydrase activity of CAs. The assay is based on the hydrolysis of N2O3 in H218O to form ON18O- and 18ON18O-. After pentafluorobenzyl bromide derivatization and electron capture negative-ion chemical ionization of the pentafluorobenzyl nitro derivatives, quantification is performed by selected-ion monitoring of the anions with mass-to-charge (m/z) ratios of 46 (ONO-), m/z 48 (ON18O- and 18ONO-), m/z 50 (18ON18O-) and m/z 47 (O15NO-, internal standard).


Asunto(s)
Anhidrasa Carbónica II/química , Anhidrasa Carbónica IV/química , Óxido Nítrico/química , Nitrito Reductasas/química , Dióxido de Nitrógeno/química , Animales , Bovinos , Humanos
2.
Nitric Oxide ; 65: 22-36, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28185882

RESUMEN

Cysteine (CysSH) and its derivatives including N-acetylcysteine (NAC) and glutathione (GSH), and cysteine residues in proteins and enzymes are nitrosated with nitric oxide (NO) reaction products such as N2O3 to form S-nitrosated cysteine thiols (RCysSNO). RCysSNO undergo with cysteine thiols (RCysSH) S-transnitrosation reactions, thereby transferring reversibly their nitrosyl (+NO) group to RCysSH to form RCysSNO. •NO release from RCysSNO and S-transnitrosation are considered the most important features and signalling pathways of RCysSNO. Hydrogen sulfide (H2S: pKa1, 7; HS-: pKa2, 12.9) is an endogenous product of cysteine metabolism. We hypothesized that RCysSNO would also undergo S-transnitrosation reaction with H2S/HS-/S2- to form thionitrite (ONS-), the smallest S-nitrosated thiol. This article describes spectrophotometric and mass spectrometric investigations of S-transnitrosation reactions in phosphate buffered saline (PBS) of pH 7.4 between H2S/HS-/S2- (supplied as Na2S) and S-nitrosoglutathione (GSNO), S-nitroso-l-cysteine (CysSNO), S-nitroso-N-acetyl-l-cysteine (SNAC), and the synthetic S-nitroso-N-acetyl-l-cysteine ethyl ester (SNACET). For comparison, we also investigated the reactions of H2S/HS-/S2- with NO+BF4- and NO2+BF4-, direct ON+ and O2N+ donors, respectively, and assumed formation of ONS- and thionitrate (O2NS-), respectively. Addition of Na2S (at 1 mM) to buffered RCysSNO solutions resulted in decreases of the absorbance at 340 nm and concomitant increases in the absorbance at 410 nm depending upon the nature and concentration of RCysSNO (range, 25-1000 µM). The reactivity order of RCysSNO against H2S/HS-/S2- was: CysSNO > SNACET > GSNO > SNAC. Our spectrophotometric and GC-MS analyses indicate that H2S/HS-/S2- and RCysSNO undergo multiple reactions. Major final reaction products were found to be nitrite and nitrate. ONS- and O2NS- were not detected by GC-MS, suggesting rapid and complete S/O-exchange from water at pH 7.4. GC-MS analyses of ethyl acetate extracts of reaction mixtures suggested formation of tetrasulfur (S4), the precursor of elemental sulfur (S8). The broad absorbance around 410 nm and the turbidity occurred in RCysSNO/Na2S reaction mixtures support formation of polysulfides (polysulfanes) and colloidal sulfur. The reaction of NO+BF4- and NO2+BF4- with H2S/HS-/S2- differed from the S-transnitrosation reactions of RCysSNO, with NO+BF4- being more reactive than NO2+BF4-. In this article, we also briefly review and discuss recent published work dealing with the reaction of H2S/HS-/S2- with low- and high-molecular-mass S-nitrosated thiols. This research area is highly challenging and controversial with respect to the primarily formed reaction products. The synthesis of structurally well-characterized, pure stable-isotope labelled species of putative reaction products, including ONS-, O2NS- and ONSS-, and their use in combination with mass spectrometry coupled to chromatography, e.g. GC-MS and LC-MS/MS, are indispensable in exploring the complex interaction of the two gasotransmitters, H2S and •NO.


Asunto(s)
Sulfuro de Hidrógeno/química , S-Nitrosotioles/química , Catalasa/química , Cisteína/análogos & derivados , Cisteína/química , Humanos , Concentración de Iones de Hidrógeno , Cinética , Metahemoglobina/química , Nitratos/análisis , Nitritos/análisis , Nitrosación , Oxidación-Reducción , Oxihemoglobinas/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-27614419

RESUMEN

A GC-MS method is reported for the quantitative analysis of S-nitrosothiols (RSNO) derived from endogenous low- and high-molecular mass thiols (RSH) including hemoglobin, cysteine, glutathione, N-acetylcysteine, and the exogenous N-acetylcysteine ethyl ester. The method is based on the conversion of RSNO to nitrite by aqueous Na2S (S2-). 15N-Labelled analogs (RS15NO) or 15N-labelled nitrite and nitrate were used as internal standards. The nitrite (14NO2- and 15NO2-) and nitrate (O14NO2- and O15NO2- anions were derivatised by pentafluorobenzyl (PFB) bromide (PFB-Br) in aqueous acetone and their PFB derivatives were separated by gas chromatography. After electron-capture negative-ion chemical ionization, the anions were separated by mass spectrometry and detected by selected-ion monitoring of m/z 46 for 14NO2-, m/z 47 for 15NO2-, m/z 62 for O14NO2-, and m/z 63 for O15NO2-. The expected thionitrites (-S14NO and -S15NO) were not detected, suggesting that they are intermediates and rapidly exchange their S by O from water, presumably prior to PFB-Br derivatization. The reaction of S2- with RSNO and sodium nitroprusside (SNP) resulted in the formation of nitrite and nitrate as the major and minor reaction products, respectively. The novel Na2S procedure was compared with established procedures based on the use of aqueous HgCl2 or cysteine/Cu2+ reagents to convert the S-nitroso group to nitrite. Our results provide evidence for an equilibrium S-transnitrosylation reaction between S2- with RSNO in buffered solutions of neutral pH. Use of Na2S in molar excess over RSNO shifts this reaction to the right, thus allowing almost complete conversion of RSNO to nitrite and nitrate. The Na2S procedure should be useful for the quantitative determination of RSNO as nitrite and nitrate after PFB-Br derivatization and GC-MS analysis. The Na2S procedure may also contribute to explore the complex reactions of S2- with RSNO, SNP and other NO-containing compounds.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Nitroprusiato/análisis , S-Nitrosotioles/análisis , Sulfuros/química , Fluorobencenos , Modelos Lineales , Nitratos/análisis , Nitritos/análisis , Nitroprusiato/química , S-Nitrosotioles/química
4.
Amino Acids ; 48(7): 1695-706, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27129464

RESUMEN

Nitric oxide (NO), S-nitrosoglutathione (GSNO) and S-nitrosocysteine are highly potent signaling molecules, acting both by cGMP-dependent and cGMP-independent mechanisms. The NO metabolite nitrite (NO2 (-)) is a major NO reservoir. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to reduce/convert nitrite to NO. We evaluated the role and the physiological importance of CA for an extra-platelet CA/nitrite/NO/cGMP pathway in human platelets. Authentic NO was analyzed by an NO-sensitive electrode. GSNO and GS(15)NO were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). cGMP was determined by LC-MS/MS or RIA. In reduced glutathione (GSH) containing aqueous buffer (pH 7.4), human and bovine erythrocytic CAII-mediated formation of GSNO from nitrite and GS(15)NO from (15)N-nitrite. In the presence of L-cysteine and GSH, this reaction was accompanied by NO release. Incubation of nitrite with bovine erythrocytic CAII and recombinant soluble guanylyl cyclase resulted in cGMP formation. Upon incubation of nitrite with bovine erythrocytic CAII and washed human platelets, cGMP and P-VASP(S239) were formed in the platelets. This study provides the first evidence that extra-platelet nitrite and erythrocytic CAII may modulate platelet function in a cGMP-dependent manner. The new nitrite-dependent CA activity may be a general principle and explain the cardioprotective effects of inorganic nitrite in the vasculature. We propose that nitrous acid (ONOH) is the primary CA-catalyzed reaction product of nitrite.


Asunto(s)
Plaquetas/enzimología , Anhidrasa Carbónica II , Eritrocitos/enzimología , Nitritos , Compuestos Nitrosos , Guanilil Ciclasa Soluble , Compuestos de Sulfhidrilo , Animales , Anhidrasa Carbónica II/química , Anhidrasa Carbónica II/metabolismo , Bovinos , Humanos , Nitritos/química , Nitritos/metabolismo , Compuestos Nitrosos/síntesis química , Compuestos Nitrosos/química , Compuestos Nitrosos/metabolismo , Guanilil Ciclasa Soluble/química , Guanilil Ciclasa Soluble/metabolismo , Compuestos de Sulfhidrilo/química , Compuestos de Sulfhidrilo/metabolismo
5.
Nitric Oxide ; 55-56: 25-35, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26976364

RESUMEN

Inorganic nitrite (NO2(-), ON-O(-) ←→ (-)O-NO) is the autoxidation product of nitric oxide (NO). Nitrite can also be formed from inorganic nitrate (ONO2(-)), the major oxidation product of NO in erythrocytes, by the catalytic action of bacterial nitrate reductase in gut and oral microflora. Nitrite can be reduced to NO by certain cellular proteins and enzymes, as well as in the gastric juice under acidic conditions. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to convert nitrite to NO. Renal CA isoforms are involved in the reabsorption of nitrite and may, therefore, play an important role in NO homeostasis. Yet, the mechanisms underlying the action of CA on nitrite are incompletely understood. The nitrate/nitrite system is regarded as a reservoir of NO. We have recently shown that nitrite reacts chemically with carbon dioxide (CO2), the regular substrate of CA. The present communication reports a stable isotope ratio mass spectrometry (IRMS) study on the reaction of NO2(-) and CO2 performed in 50 mM HEPES buffer of pH 7.4 at 37 °C. By using (18)O-labelled nitrite ((18)ON-O(-)/(-18)O-NO) and CO2 we observed formation of (18)O-labelled CO2. This finding is an unequivocal evidence of the chemical reaction of (18)ON-O(-)/(-18)O-NO with CO2. The reaction is rapid and involves nucleophilic attack of the negatively charged nitrite via one of its oxygen atoms on the partially positively charged CO2 molecule to form the putative intermediate (18)ON-O-CO2(-)/(-)O2C-(18)O-NO. The by far largest fraction of this intermediate decomposes back to (18)ON-O(-)/(-18)O-NO and CO2. A very small fraction of the intermediate, however, rearranges and finally decomposes to form (18)OCO and nitrite. This reaction is slower in the presence of an isolated erythrocytic CA isoform II. In summary, NO2(-), CO2 and CA are ubiquitous. The chemical reaction of NO2(-) with CO2 and its modulation by CA isoforms may play important roles in the transport of nitrite in red blood cells, the kidney and other cells and organs.


Asunto(s)
Dióxido de Carbono/química , Nitritos/química , Tampones (Química) , Concentración de Iones de Hidrógeno , Espectrometría de Masas , Radioisótopos de Oxígeno
6.
Artículo en Inglés | MEDLINE | ID: mdl-26830534

RESUMEN

Previously we found by HPLC with fluorescence detection that inorganic nitrite induces oxidation of glutathione (GSH) to its disulfide (GSSG) in intact and more abundantly in lyzed red blood cells (RBCs) from healthy humans. In the present work, we performed MS-based protein analysis and observed that nitrite (range, 0-20mM) induces formation of S-glutathionyl hemoglobin (HbSSG) at cysteine (Cys) ß93 and ß112 of oxyhemoglobin (HbO2) in lyzed human RBCs (range, 6-8mM HbO2). Hemoglobin species were isolated from incubation mixtures of nitrite in lyzed RBCs by ultrafiltration or affinity chromatography and analyzed by HPLC and LC-MS/MS. The mechanism likely involves inhibition of catalase activity by nitrite (IC50, 9 µM), which allows H2O2 to accumulate and oxidize Cys moieties of oxyhemoglobin and erythrocytic GSH to form HbSSG in addition to GSSG. In freshly prepared hemolysate samples, nitrite induced release of superoxide and molecular oxygen. In the presence of paracetamol and nitrite in hemolysate samples, 3-nitro-paracetamol was detected. Nitrite also induced S-nitroso hemoglobin (HbSNO) formation in low yield (i.e., 0.1%). Synthetic cysteine (Cys), glutathione (GSH), N-acetylcysteine (NAC) and N-acetylcysteine ethyl ester (NACET) inhibited nitrite-induced modifications of oxyhemoglobin including methemoglobin, HbSSG (CysSH >> NACET >> GSH ≈ NAC; thiol concentration, 50 µM) and HbSNO. Nitrite-induced oxidative modifications may alter physiological hemoglobin functions and may require alternative treatments for conditions associated with oxidized hemoglobin like in nitrite-induced methemoglobinemia. Accumulation of soluble Cys in RBCs via oral administration of NACET could be a new promising strategy to prevent nitrite-induced methemoglobinemia by nitrite and other oxidants.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Glutatión/metabolismo , Hemoglobinas/metabolismo , Nitritos/química , Espectrometría de Masas en Tándem/métodos , Eritrocitos/química , Eritrocitos/metabolismo , Femenino , Glutatión/sangre , Hemoglobinas/química , Humanos , Masculino , Nitritos/sangre , Oxidación-Reducción
7.
Amino Acids ; 48(2): 593-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26602568

RESUMEN

The dicarboxylic tripeptide glutathione (GSH) is the most abundant intracellular thiol. GSH analysis by liquid chromatography is routine. Yet, GSH analysis by gas chromatography is challenged due to thermal instability and lacking volatility. We report a high-yield laboratory method for the preparation of (2)H-labeled GSH dimethyl ester ((d3Me)2-GSH) for use as internal standard (IS) which was characterized by LC-MS/MS. For GC-MS analysis, the dimethyl esters of GSH and the IS were derivatized with pentafluoropropionic (PFP) anhydride. Electron-capture negative-ion chemical ionization of the (Me)2-(PFP)3-GSH provided high sensitivity. We encourage increasing use of GC-MS in the analysis of amino acids as their Me-PFP derivatives in the ECNICI mode.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Glutatión/análisis , Ésteres , Fluorocarburos/química , Iones
8.
Amino Acids ; 48(1): 245-55, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26334347

RESUMEN

The intrinsic activity of carbonic anhydrase (CA) is the hydration of CO2 to carbonic acid and its dehydration to CO2. CA may also function as esterase and phosphatase. Recently, we demonstrated that renal CA is mainly responsible for the reabsorption of nitrite (NO2(-)) which is the most abundant reservoir of the biologically highly potent nitric oxide (NO). By means of a stable-isotope dilution GC-MS method, we discovered a novel CA activity which strictly depends upon nitrite. We found that bovine erythrocytic CAII (beCAII) catalyses the incorporation of (18)O from H2 (18)O into nitrite at pH 7.4. After derivatization with pentafluorobenzyl bromide, gas chromatographic separation and mass spectrometric analysis, we detected ions at m/z 48 for singly (18)O-labelled nitrite ((16)O=N-(18)O(-)/(18)O=N-(16)O(-)) and at m/z 50 for doubly (18)O-labelled nitrite ((18)O=N-(18)O(-)) in addition to m/z 46 for unlabelled nitrite. Using (15)N-labelled nitrite ((15)NO2 (-), m/z 47) as an internal standard and selected-ion monitoring of m/z 46, m/z 48, m/z 50 and m/z 47, we developed a GC-MS microassay for the quantitative determination of the nitrite-dependent beCAII activity. The CA inhibitors acetazolamide and FC5 207A did not alter beCAII-catalysed formation of singly and doubly (18)O-labelled nitrite. Cysteine and the experimental CA inhibitor DIDS (a diisothiocyanate) increased several fold the beCAII-catalysed formation of the (18)O-labelled nitrite species. Cysteine, acetazolamide, FC5 207A, and DIDS by themselves had no effect on the incorporation of (18)O from H2 (18)O into nitrite. We conclude that erythrocytic CA possesses a nitrite-dependent activity which can only be detected when nitrite is used as the substrate and the reaction is performed in buffers of neutral pH values prepared in H2 (18)O. This novel CA activity, i.e., the nitrous acid anhydrase activity, represents a bioactivation of nitrite and may have both beneficial (via S-nitrosylation and subsequent NO release) and possibly adverse (via C- and N-nitrosylation) effects in living organisms.


Asunto(s)
Anhidrasas Carbónicas/química , Pruebas de Enzimas/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Nitritos/química , Animales , Biocatálisis , Bovinos , Humanos , Nitratos/química
9.
Platelets ; 26(6): 583-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25360996

RESUMEN

Reports on expression and functionality of nitric oxide synthase (NOS) activity in human blood platelets and erythrocytes are contradictory. We used a specific gas chromatography-mass spectrometry (GC-MS) method to detect NOS activity in human platelets. The method measures simultaneously [(15)N]nitrite and [(15)N]nitrate formed from oxidized (15)N-labeled nitric oxide ((15)NO) upon its NOS-catalyzed formation from the substrate l-[guanidino-(15)N2]-arginine. Using this GC-MS assay, we did not detect functional NOS in non-stimulated platelets and in intact platelets activated by various agonists (adenosine diphosphate, collagen, thrombin, or von Willebrand factor) or lysed platelets. l-[guanidino-nitro]-Arginine-inhibitable NOS activity was measured after addition of recombinant human endothelial NOS to lysed platelets. Previous and recent studies from our group challenge expression and functionality of NOS in human platelets and erythrocytes.


Asunto(s)
Plaquetas/metabolismo , Óxido Nítrico Sintasa/metabolismo , Anticoagulantes/farmacología , Plaquetas/efectos de los fármacos , Activación Enzimática , Femenino , Cromatografía de Gases y Espectrometría de Masas , Voluntarios Sanos , Humanos , Masculino , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Recombinantes/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-25237784

RESUMEN

A specific, sensitive and fast LC-MS/MS method with positive electrospray ionization for the quantitative determination of nitrite in human plasma is reported. Added [(15)N]nitrite served as the internal standard (IS). Endogenous nitrite and IS were converted to their S-nitrosoglutathione (GSNO) derivatives, i.e., GS(14)NO and GS(15)NO, respectively, by using excess glutathione (GSH) and HCl. For plasmatic nitrite, fresh plasma (0.5 mL) was spiked with the IS (1000 nM) and ultrafiltered (cut-off 10 kDa). Ultrafiltrate aliquots (100 µL) were treated with aqueous GSH at a final concentration of 1 mM and 1 µL of 5M HCl for 5 min. After final sample dilution (1:1, v/v) with acetonitrile-water (70:30, v/v), 2 µL aliquots were injected via a thermostated (4 °C) autosampler. The mobile phase was acetonitrile-water (70:30, v/v), contained 20mM ammonium formate, had a pH value of 7, and was pumped isocratically at 0.5 mL/min. A Nucleoshell column was used for LC separation. The retention time of GSNO was about 0.8 min and the total analysis time 5 min. Quantification was performed by selected-reaction monitoring the specific mass transition m/z337([M+H](+))→m/z 307([M+H-(14)NO](+·)) for GS(14)NO (i.e., for endogenous nitrite) and m/z338([M+H](+))→m/z307([M+H-(15)NO](+·)) for GS(15)NO (i.e., for the IS). The method was thoroughly validated in human plasma (range, 0-2000 nM). The LOD and LOQ values of the LC-MS/MS method were determined to be 1 fmol and 5 nM [(15)N]nitrite, respectively. The relative matrix-effect of about 21% was outweighed entirely by the IS. In freshly prepared plasma samples from heparinized blood donated by three healthy subjects, nitrite concentration was determined by LC-MS/MS to be 516, 199 and 369 nM. These concentrations were confirmed by using a previously reported GC-MS method and agree with those measured previously by HPLC-UV (334 nm) after nitrite conversion to S-nitroso-N-acetylcysteine (SNAC) by N-acetylcysteine (NAC). Measurement of nitrite by LC-MS/MS as GSNO is about 1000 times more sensitive than by HPLC-UV as SNAC. The applicability of the method to microdialysate, urine, and saliva samples from humans was demonstrated. The agreement of two orthogonal MS-based methods indicates that the concentration of nitrite in freshly prepared, non-frozen plasma from heparinized blood of fasted healthy humans is of the order of 400 nM.


Asunto(s)
Cromatografía Liquida/métodos , Nitritos/sangre , Nitritos/metabolismo , S-Nitrosoglutatión/metabolismo , Espectrometría de Masas en Tándem/métodos , Adulto , Humanos , Marcaje Isotópico , Límite de Detección , Modelos Lineales , Masculino , Persona de Mediana Edad , Nitritos/química , Reproducibilidad de los Resultados , S-Nitrosoglutatión/análisis , S-Nitrosoglutatión/química , Adulto Joven
11.
Artículo en Inglés | MEDLINE | ID: mdl-25033468

RESUMEN

In healthy human subjects, less than 0.2% of l-arginine is converted to l-citrulline and nitric oxide (NO) by NO synthases (NOS), a metabolic pathway present in all cell types. Assessment of NOS activity in vitro and in vivo by measuring l-citrulline or NO is difficult. l-citrulline is formed from l-arginine to a much higher extent by other pathways including the urea cycle. Furthermore, NO is a very short-lived gaseous molecule and is oxidized to nitrite and nitrate which are ubiquitous. In fact, nitrite and nitrate are also derived from food and air and are major laboratory contaminants. Further, NOS (in the uncoupled state) are also able to produce superoxide in addition and/or instead of l-citrulline and NO. The difficulties of NOS assays based on l-citrulline and NO measurement can only in part be overcome by sophisticated techniques including use of radio-labeled ((3)H or (14)C) and stable-isotope labeled ((15)N2 at the guanidine group) l-arginine analogs as substrates for NOS and measurement of radio-labeled l-citrulline and (15)N-labeled nitrite and nitrate, respectively. In the present work, we report on the development, validation and application of an UPLC-MS/MS method for the assessment of the activity of recombinant NOS enzymes by using [guanidino-(15)N2]-l-arginine (20 µM for recombinant NOS, 5mM in cell systems) as the substrate and by measuring [ureido-(15)N]-l-citrulline as the reaction product (usually formed at concentrations below 1 µM) using (2)H7-l-citrulline as the internal standard. The lower limit of detection of the method is about 80 fmol (2)H7-l-citrulline. In cell systems, exceeding [guanidino-(15)N2]-l-arginine is removed by strong cation exchanger solid-phase extraction. The method was cross-validated by a GC-MS assay that measures simultaneously (15)N-nitrite and (15)N-nitrate as pentafluorobenzyl derivatives, with unlabeled nitrite and nitrate serving as the internal standards. By means of this UPLC-MS/MS (15)N-citrulline assay, N(G)-nitro-arginine (100 µM) was found to inhibit recombinant inducible NOS (iNOS) activity (by 38%), whereas nitrite and GSSG (each at 500 µM) did not affect iNOS activity at all. Nitrite and GSSG at pathophysiological concentrations are unlikely to uncouple NOS. NOS activity was not detectable in platelets of healthy humans by the UPLC-MS/MS and GC-MS assays.


Asunto(s)
Plaquetas/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Citrulina/análisis , Óxido Nítrico Sintasa/sangre , Óxido Nítrico/metabolismo , Espectrometría de Masas en Tándem/métodos , Plaquetas/enzimología , Citrulina/análogos & derivados , Citrulina/química , Citrulina/metabolismo , Humanos , Límite de Detección , Isótopos de Nitrógeno , Reproducibilidad de los Resultados
12.
Oxid Med Cell Longev ; 2014: 212576, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24799980

RESUMEN

Paracetamol (acetaminophen) is a widely used analgesic drug. It interacts with various enzyme families including cytochrome P450 (CYP), cyclooxygenase (COX), and nitric oxide synthase (NOS), and this interplay may produce reactive oxygen species (ROS). We investigated the effects of paracetamol on prostacyclin, thromboxane, nitric oxide (NO), and oxidative stress in four male subjects who received a single 3 g oral dose of paracetamol. Thromboxane and prostacyclin synthesis was assessed by measuring their major urinary metabolites 2,3-dinor-thromboxane B2 and 2,3-dinor-6-ketoprostaglandin F(1α), respectively. Endothelial NO synthesis was assessed by measuring nitrite in plasma. Urinary 15(S)-8-iso-prostaglanding F(2α) was measured to assess oxidative stress. Plasma oleic acid oxide (cis-EpOA) was measured as a marker of cytochrome P450 activity. Upon paracetamol administration, prostacyclin synthesis was strongly inhibited, while NO synthesis increased and thromboxane synthesis remained almost unchanged. Paracetamol may shift the COX-dependent vasodilatation/vasoconstriction balance at the cost of vasodilatation. This effect may be antagonized by increasing endothelial NO synthesis. High-dosed paracetamol did not increase oxidative stress. At pharmacologically relevant concentrations, paracetamol did not affect NO synthesis/bioavailability by recombinant human endothelial NOS or inducible NOS in rat hepatocytes. We conclude that paracetamol does not increase oxidative stress in humans.


Asunto(s)
Acetaminofén/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/efectos de los fármacos , Óxido Nítrico Sintasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/metabolismo , Adulto , Animales , Epoprostenol/biosíntesis , Hepatocitos/enzimología , Humanos , Masculino , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/farmacología , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/farmacología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/farmacología , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Tromboxanos/biosíntesis
13.
Artículo en Inglés | MEDLINE | ID: mdl-24507967

RESUMEN

Oleic acid (cis-9,10-octadecenoic acid) is the most abundant monounsaturated fatty acid in human blood. Peroxynitrite (ONOO(-)) is a short-lived species formed from the reaction of nitric oxide (NO) and superoxide (O2(-)). Peroxynitrite is a potent oxidizing and moderate nitrating agent. We investigated reactions of unlabelled and deuterium labelled oleic acid in phosphate buffered saline (PBS) and lysed human erythrocytes with commercially available sodium peroxynitrite (Na(+)ONOO(-)). Non-derivatized reaction products were analyzed by spectrophotometry, HPLC with UV absorbance detection, and LC-MS/MS electrospray ionization in the negative-ion mode. Reaction products were also analyzed by GC-MS/MS in the electron capture negative-ion chemical ionization mode after derivatization first with pentafluorobenzyl (PFB) bromide and then with N,O-bis(trimethylsilyl)trifluoroacetamide. Identified oleic acid reaction products in PBS and hemolysate include cis-9,10-epoxystearic acid and trans-9,10-epoxystearic acid (about 0.1% with respect to oleic acid), threo- and erythro-9,10-dihydroxy-stearic acids. Vinyl nitro-oleic acids, 9-nitro-oleic acid (9-NO2OA) and 10-nitro-oleic acid (10-NO2OA), or other nitro-oleic acids were not found to be formed from the reaction of oleic acid with peroxynitrite in PBS or hemolysate. Our in vitro study suggests that peroxynitrite oxidizes but does not nitrate oleic acid in biological samples. Unlike thiols and tyrosine, oleic acid is not susceptible to peroxynitrite. GC-MS/MS analysis of PFB esters is by far more efficient than LC-MS/MS analysis of non-derivatized oleic acid and its derivates. Our in vitro results support our previous in vivo findings that nitro-oleic acid plasma concentrations of healthy and diseased subjects are in the pM/nM-range.


Asunto(s)
Nitrocompuestos/química , Ácido Oléico/química , Ácido Peroxinitroso/química , Tampones (Química) , Cromatografía Líquida de Alta Presión , Deuterio/química , Eritrocitos/química , Cromatografía de Gases y Espectrometría de Masas , Hemólisis , Humanos , Hidroxilación , Nitrocompuestos/sangre , Ácido Oléico/sangre , Oxidación-Reducción , Espectrometría de Masas en Tándem
15.
Nitric Oxide ; 31: 31-7, 2013 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-23511248

RESUMEN

In the literature, the distribution of nitrite and nitrate, the major metabolites of nitric oxide (NO), between plasma and erythrocytes and its dependency on partial CO2 pressure (pCO2) in mammalian blood are uncertain. By means of a previously reported fully validated stable-isotope dilution gas chromatography-mass spectrometry (GC-MS) method, we measured nitrite and nitrate concentrations in heparinized plasma from venous, arterial and arterialized blood donated by five healthy non-exercising volunteers at three different time points (0, 15, 30 min). pCO2, pH and oxygen saturation were measured by standard techniques. The nitrite and nitrate concentrations and the nitrite-to-nitrate ratio in plasma did not correlate with pCO2 (r=-0.272, P=0.07). Nitrite was found to be almost evenly distributed between plasma and erythrocytes of another eleven healthy non-exercising subjects. In a rabbit model of ARDS, no differences were found in the plasma nitrite and nitrate concentrations comparing normoventilation with hypercapnia. Our studies suggest that the distribution of nitrite between plasma and erythrocytes at rest is largely even and independent of pCO2 in blood of healthy humans and rabbits with ARDS.


Asunto(s)
Dióxido de Carbono/sangre , Eritrocitos/metabolismo , Nitritos/sangre , Descanso/fisiología , Adulto , Análisis de Varianza , Animales , Eritrocitos/química , Eritrocitos/citología , Femenino , Humanos , Concentración de Iones de Hidrógeno , Modelos Lineales , Masculino , Persona de Mediana Edad , Conejos
16.
Artículo en Inglés | MEDLINE | ID: mdl-23453822

RESUMEN

We developed and validated a fast UPLC-MS/MS method with positive electrospray ionization (ESI+) for the quantitative determination of S-nitrosoglutathione (GSNO) in human plasma. We used a published protocol for the inactivation of plasma γ-glutamyltransferase (γGT) activity by using the γGT transition inhibitor serine/borate and the chelator EDTA for the stabilization of GSNO, and N-ethylmaleimide (NEM) to block SH groups and to avoid S-transnitrosylation reactions which may diminish GSNO concentration. S-[(15)N]Nitrosoglutathione (GS(15)NO) served as internal standard. Fresh blood was treated with NEM/serine/borate/EDTA, plasma spiked with GS(15)NO (50nM) was ultrafiltered (cut-off 10kDa) and 10µL aliquots of the ultrafiltrate were analyzed by UPLC-MS/MS. Five HILIC columns and an Acquity UPLC BH amide column were tested. The mobile phase was acetonitrile-water (70:30, v/v), contained 20mM ammonium formate, had a pH value of 7, and was pumped isocratically (0.5mL/min). The Nucleoshell column allowed better LC performance and higher MS sensitivity. The retention time of GSNO was about 1.1min. Quantification was performed by selected-reaction monitoring the mass transition m/z 337 ([M+H](+))→m/z 307 ([M+H(14)NO](+)) for GSNO (i.e., GS(14)NO) and m/z 338 ([M+H](+))→m/z 307 ([M+H(15)NO](+)) for GS(15)NO. NEM/serine/borate/EDTA was found to stabilize GSNO in human plasma. The method was validated in human plasma (range, 0-300nM) using 50nM GS(15)NO. Accuracy and precision were in generally acceptable ranges. A considerable matrix effect was observed, which was however outweighed by the internal standard GS(15)NO. In freshly prepared plasma from heparinized blood donated by 10 healthy subjects, no endogenous GSNO was determined above 2.8nM, the limit of quantitation (LOQ) of the method. This study challenges previously reported GSNO plasma concentrations being far above the present method LOQ value and predicts that the concentration of low-molecular-mass and high-molecular-mass S-nitrosothiols are in the upper pM- and lower nM-range, respectively.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , S-Nitrosoglutatión/sangre , S-Nitrosotioles/química , Espectrometría de Masas en Tándem/métodos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Isótopos de Nitrógeno , Análisis de Regresión , Reproducibilidad de los Resultados , S-Nitrosoglutatión/química , S-Nitrosotioles/sangre , Sensibilidad y Especificidad , gamma-Glutamiltransferasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...