Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2307285, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225688

RESUMEN

Gated adsorption is one of the unique physical properties of flexible metal-organic frameworks with high application potential in selective adsorption and sensing of molecules. Despite recent studies that have provided some guidelines in understanding and designing structural flexibility for controlling gate opening by chemical modification of the secondary building units, currently, there is no established strategy to design a flexible MOF showing selective gated adsorption for a specific guest molecule. In a present contribution it is demonstrated for the first time, that the selectivity in the gate opening of a particular compound can be tuned, changed, and even reversed using particle size engineering DUT-8(Zn) ([Zn2 (2,6-ndc)2 (dabco)]n , 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane, DUT = Dresden University of Technology) experiences phase transition from open (op) to closed (cp) pore phase upon removal of solvent from the pores. Microcrystals show selective reopening in the presence of dichloromethane (DCM) over alcohols. Crystal downsizing to micron size unexpectedly reverses the gate opening selectivity, causing DUT-8(Zn) to open its nanosized pores for alcohols but suppressing the responsivity toward DCM.

2.
Adv Mater ; 35(8): e2207741, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36349824

RESUMEN

Switchable metal-organic frameworks (MOFs) change their structure in time and selectively open their pores adsorbing guest molecules, leading to highly selective separation, pressure amplification, sensing, and actuation applications. The 3D engineering of MOFs has reached a high level of maturity, but spatiotemporal evolution opens a new perspective toward engineering materials in the 4th dimension (time) by t-axis design, in essence exploiting the deliberate tuning of activation barriers. This work demonstrates the first example in which an explicit temporal engineering of a switchable MOF (DUT-8, [M1 M2 (2,6-ndc)2 dabco]n , 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4diazabicyclo[2.2.2]octane, M1  = Ni, M2  = Co) is presented. The temporal response is deliberately tuned by variations in cobalt content. A spectrum of advanced analytical methods is presented for analyzing the switching kinetics stimulated by vapor adsorption using in situ time-resolved techniques ranging from ensemble adsorption and advanced synchrotron X-ray diffraction experiments to individual crystal analysis. A novel analysis technique based on microscopic observation of individual crystals in a microfluidic channel reveals the lowest limit for adsorption switching reported so far. Differences in the spatiotemporal response of crystal ensembles originate from an induction time that varies statistically and widens characteristically with increasing cobalt content reflecting increasing activation barriers.

3.
Chem Commun (Camb) ; 58(75): 10492-10495, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36043355

RESUMEN

Herein we analyze the switching kinetics of a breathing framework MIL-53(Al) with respect to different crystallite size regimes. Synchrotron time-resolved powder X-ray diffraction (PXRD) and adsorption rate analysis of n-butane physisorption at 298 K demonstrate the decisive role of crystal size affecting the time domain of breathing transitions in MIL-53(Al).

4.
Inorg Chem ; 60(3): 1726-1737, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33439006

RESUMEN

Linker elongation is an important method to systematically adjust porosity and pore size in isoreticular MOFs. In flexible structures, this approach opens the possibility for the systematic analysis of the building blocks and their contribution to the overall flexible behavior enabling tuning of the framework responsivity toward molecular stimuli. In this work, we report two new compounds isoreticular to the highly flexible pillared layer structure DUT-8(Ni) ([Ni2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalenedicarboxylate, dabco = 1,4-diazabicylo[2.2.2]octane). Aromatic linker 2,6-ndc was substituted by longer carboxylic linkers, namely, 4,4'-biphenyldicarboxylate (4,4'-bpdc) and 4,4'-stilbenedicarboxylate (4,4'-sdc), while the dabco pillar was retained. The structural response of the new compounds toward the desolvation and adsorption of various fluids was studied using advanced in situ PXRD techniques, demonstrating distinct differences in the flexible behavior of three compounds and disclosing the impact of linker structure on the framework response. Theoretical calculations provide mechanistic insights and an energetic rationale for the pronounced differences in switchability observed. The energetics of linker bending and linker-linker dispersion interactions govern the phase transitions in investigated MOFs.

5.
Angew Chem Int Ed Engl ; 57(42): 13780-13783, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30160076

RESUMEN

A new mesoporous metal-organic framework (MOF; DUT-60) was conceptually designed in silico using Zn4 O6+ nodes, ditopic and tritopic linkers to explore the stability limits of framework architectures with ultrahigh porosity. The robust ith-d topology of DUT-60 provides an average bulk and shear modulus (4.97 GPa and 0.50 GPa, respectively) for this ultra-porous framework, a key prerequisite to suppress pore collapse during desolvation. Subsequently, a cluster precursor approach, resulting in minimal side product formation in the solvothermal synthesis, was used to produce DUT-60, a new crystalline framework with the highest recorded accessible pore volume (5.02 cm3 g-1 ) surpassing all known crystalline framework materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...