Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 23680, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34880358

RESUMEN

Endogenous rhythmic growth (ERG) is displayed by many tropical and some major temperate tree species and characterized by alternating root and shoot flushes (RF and SF). These flushes occur parallel to changes in biomass partitioning and in allocation of recently assimilated carbon and nitrogen. To address how biotic interactions interplay with ERG, we cross-compared the RF/SF shifts in oak microcuttings in the presence of pathogens, consumers and a mycorrhiza helper bacterium, without and with an ectomycorrhizal fungus (EMF), and present a synthesis of the observations. The typical increase in carbon allocation to sink leaves during SF did not occur in the presence of root or leaf pathogens, and the increase in nitrogen allocation to lateral roots during RF did not occur with the pathogens. The RF/SF shifts in resource allocation were mostly restored upon additional interaction with the EMF. Its presence led to increased resource allocation to principal roots during RF, also when the oaks were inoculated additionally with other interactors. The interactors affected the alternating, rhythmic growth and resource allocation shifts between shoots and roots. The restoring role of the EMF on RF/SF changes in parallel to the corresponding enhanced carbon and nitrogen allocation to sink tissues suggests that the EMF is supporting plants in maintaining the ERG.


Asunto(s)
Interacciones Microbiota-Huesped , Micorrizas/fisiología , Quercus/microbiología , Quercus/fisiología , Simbiosis , Biomasa , Especificidad de Órganos , Desarrollo de la Planta , Fenómenos Fisiológicos de las Plantas
2.
Front Microbiol ; 11: 573972, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013811

RESUMEN

We compared the consistency, accuracy and reproducibility of next-generation short read sequencing between ten laboratories involved in food safety (research institutes, state laboratories, universities and companies) from Germany and Austria. Participants were asked to sequence six DNA samples of three bacterial species (Campylobacter jejuni, Listeria monocytogenes and Salmonella enterica) in duplicate, according to their routine in-house sequencing protocol. Four different types of Illumina sequencing platforms (MiSeq, NextSeq, iSeq, NovaSeq) and one Ion Torrent sequencing instrument (S5) were involved in the study. Sequence quality parameters were determined for all data sets and centrally compared between laboratories. SNP and cgMLST calling were performed to assess the reproducibility of sequence data collected for individual samples. Overall, we found Illumina short read data to be more accurate (higher base calling accuracy, fewer miss-assemblies) and consistent (little variability between independent sequencing runs within a laboratory) than Ion Torrent sequence data, with little variation between the different Illumina instruments. Two laboratories with Illumina instruments submitted sequence data with lower quality, probably due to the use of a library preparation kit, which shows difficulty in sequencing low GC genome regions. Differences in data quality were more evident after assembling short reads into genome assemblies, with Ion Torrent assemblies featuring a great number of allele differences to Illumina assemblies. Clonality of samples was confirmed through SNP calling, which proved to be a more suitable method for an integrated data analysis of Illumina and Ion Torrent data sets in this study.

3.
BMC Genomics ; 21(1): 399, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532205

RESUMEN

BACKGROUND: Associations of tree roots with diverse symbiotic mycorrhizal fungi have distinct effects on whole plant functioning. An untested explanation might be that such effect variability is associated with distinct impacts of different fungi on gene expression in local and distant plant organs. Using a large scale transcriptome sequencing approach, we compared the impact of three ectomycorrhizal (EMF) and one orchid mycorrhizal fungi (OMF) on gene regulation in colonized roots (local), non-colonized roots (short distance) and leaves (long distance) of the Quercus robur clone DF159 with reference to the recently published oak genome. Since different mycorrhizal fungi form symbiosis in a different time span and variable extents of apposition structure development, we sampled inoculated but non-mycorrhizal plants, for which however markedly symbiotic effects have been reported. Local root colonization by the fungi was assessed by fungal transcript analysis. RESULTS: The EMF induced marked and species specific effects on plant development in the analysed association stage, but the OMF did not. At local level, a common set of plant differentially expressed genes (DEG) was identified with similar patterns of responses to the three EMF, but not to the OMF. Most of these core DEG were down-regulated and correspond to already described but also new functions related to establishment of EMF symbiosis. Analysis of the fungal transcripts of two EMF in highly colonized roots also revealed onset of a symbiosis establishment. In contrast, in the OMF, the DEG were mainly related to plant defence. Already at short distances, high specificities in transcriptomic responses to the four fungi were detected, which were further enhanced at long distance in leaves, where almost no common DEG were found between the treatments. Notably, no correlation between phylogeny of the EMF and gene expression patterns was observed. CONCLUSIONS: Use of clonal oaks allowed us to identify a core transcriptional program in roots colonized by three different EMF, supporting the existence of a common EMF symbiotic pathway. Conversely, the specific responses in non-colonized organs were more closely related to the specific impacts of the different of EMF on plant performance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Micorrizas/genética , Quercus/genética , Regulación hacia Abajo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Micorrizas/clasificación , Filogenia , Hojas de la Planta/genética , Raíces de Plantas/genética , Simbiosis
4.
R Soc Open Sci ; 6(3): 181869, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31032040

RESUMEN

Soil detritivores such as Collembola impact plant growth, tissue nutrient concentration and gene expression. Using a model system with pedunculate oak (Quercus robur) microcuttings that display a typical endogenous rhythmic growth with alternating shoot (SF) and root flushes (RF), we investigated the transcriptomic response of oak with and without mycorrhiza (Piloderma croceum) to the presence of Collembola (Protaphorura armata), and linked it to changes in resource allocation by pulse labelling the plants with 13C and 15N. Collembola impacted Gene Ontology (GO) terms as well as plant morphology and elemental ratios with the effects varying markedly with developmental phases. During SF Collembola increased GO terms related to primary growth and this was mirrored in increased 13C and 15N excess in aboveground plant compartments. During RF, Collembola increased GO terms related to plant secondary metabolism and physical fortification. Further, Collembola presence resulted in an increase in plant defence-related GO terms suggesting that Collembola in the rhizosphere prime oak shoots against the attack by fungi or herbivores. Notably, the impact of Collembola on growth, resource allocation and oak gene expression was modified by presence of P. croceum. The results indicate that oaks clearly react to the presence of Collembola in the rhizosphere and respond in a complex way by changing the expression of genes of both primary and secondary metabolism, and this resulted in concomitant changes in plant morphology and physiology.

5.
Mol Plant Microbe Interact ; 32(6): 770-781, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30753106

RESUMEN

Herbivores and mycorrhizal fungi interactively influence growth, resource utilization, and plant defense responses. We studied these interactions in a tritrophic system comprising Quercus robur, the herbivore Lymantria dispar, and the ectomycorrhizal fungus Piloderma croceum under controlled laboratory conditions at the levels of gene expression and carbon and nitrogen (C/N) allocation. Taking advantage of the endogenous rhythmic growth displayed by oak, we thereby compared gene transcript abundances and resource shifts during shoot growth with those during the alternating root growth flushes. During root flush, herbivore feeding on oak leaves led to an increased expression of genes related to plant growth and enriched gene ontology terms related to cell wall, DNA replication, and defense. C/N-allocation analyses indicated an increased export of resources from aboveground plant parts to belowground. Accordingly, the expression of genes related to the transport of carbohydrates increased upon herbivore attack in leaves during the root flush stage. Inoculation with an ectomycorrhizal fungus attenuated these effects but, instead, caused an increased expression of genes related to the production of volatile organic compounds. We conclude that oak defense response against herbivory is strong in root flush at the transcriptomic level but this response is strongly inhibited by inoculation with ectomycorrhizal fungi and it is extremely weak at shoot flush.


Asunto(s)
Herbivoria , Micorrizas , Quercus , Regulación de la Expresión Génica de las Plantas , Herbivoria/fisiología , Micorrizas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Quercus/crecimiento & desarrollo , Quercus/microbiología
6.
Mol Nutr Food Res ; 62(4)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29205876

RESUMEN

SCOPE: Several studies have proposed a role of vitamin D in adipogenesis. Here, we sought to study the impact of the vitamin D receptor (Vdr) on adipocyte size in young and old mice and the effect of maternal vitamin D deficiency on fetal adipogenesis. METHODS AND RESULTS: Histological analysis of adipose tissues shows that Vdr knockout (KO) mice have smaller adipocytes than wild-type (WT) mice. Next, we compare young and old Vdr-KO and WT mice and find no differences in adipocyte sizes between weaned Vdr-KO and WT mice. However, 1-year-old Vdr-KO mice, suffering from alopecia, have smaller-sized adipocytes than WT mice, although they consume more food. To elucidate whether vitamin D can directly impact adipocyte development at a critical stage of adipogenesis, we feed rat dams a vitamin D deficient (0 IU kg-1 ) or vitamin D adequate (1000 IU kg-1 ) diet. Neither DNA microarray analysis of the adipose tissues of the newborn rats nor the adipocyte sizes of 21-day-old offspring show significant differences between the two groups. CONCLUSION: Data indicate that vitamin D does not play a fundamental role in adipogenesis because vitamin D does not affect fetal adipogenesis. Moreover, the smaller adipocytes observed in adult Vdr-KO mice are presumably caused by an increased energy expenditure due to alopecia.


Asunto(s)
Adipogénesis , Vitamina D/fisiología , Adipocitos/patología , Animales , Metabolismo Energético , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Ratas , Ratas Sprague-Dawley , Receptores de Calcitriol/fisiología
7.
BMC Genomics ; 17(1): 627, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27520023

RESUMEN

BACKGROUND: Pedunculate oak (Quercus robur L.), an important forest tree in temperate ecosystems, displays an endogenous rhythmic growth pattern, characterized by alternating shoot and root growth flushes paralleled by oscillations in carbon allocation to below- and aboveground tissues. However, these common plant traits so far have largely been neglected as a determining factor for the outcome of plant biotic interactions. This study investigates the response of oak to migratory root-parasitic nematodes in relation to rhythmic growth, and how this plant-nematode interaction is modulated by an ectomycorrhizal symbiont. Oaks roots were inoculated with the nematode Pratylenchus penetrans solely and in combination with the fungus Piloderma croceum, and the systemic impact on oak plants was assessed by RNA transcriptomic profiles in leaves. RESULTS: The response of oaks to the plant-parasitic nematode was strongest during shoot flush, with a 16-fold increase in the number of differentially expressed genes as compared to root flush. Multi-layered defence mechanisms were induced at shoot flush, comprising upregulation of reactive oxygen species formation, hormone signalling (e.g. jasmonic acid synthesis), and proteins involved in the shikimate pathway. In contrast during root flush production of glycerolipids involved in signalling cascades was repressed, suggesting that P. penetrans actively suppressed host defence. With the presence of the mycorrhizal symbiont, the gene expression pattern was vice versa with a distinctly stronger effect of P. penetrans at root flush, including attenuated defence, cell and carbon metabolism, likely a response to the enhanced carbon sink strength in roots induced by the presence of both, nematode and fungus. Meanwhile at shoot flush, when nutrients are retained in aboveground tissue, oak defence reactions, such as altered photosynthesis and sugar pathways, diminished. CONCLUSIONS: The results highlight that gene response patterns of plants to biotic interactions, both negative (i.e. plant-parasitic nematodes) and beneficial (i.e. mycorrhiza), are largely modulated by endogenous rhythmic growth, and that such plant traits should be considered as an important driver of these relationships in future studies.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Quercus/genética , Quercus/parasitología , Tylenchoidea/fisiología , Animales , Regulación hacia Abajo , Perfilación de la Expresión Génica , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/parasitología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Brotes de la Planta/parasitología , Quercus/crecimiento & desarrollo , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcriptoma , Regulación hacia Arriba
8.
BMC Genomics ; 16: 658, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26328611

RESUMEN

BACKGROUND: Pedunculate oak, Quercus robur is an abundant forest tree species that hosts a large and diverse community of beneficial ectomycorrhizal fungi (EMFs), whereby ectomycorrhiza (EM) formation is stimulated by mycorrhiza helper bacteria such as Streptomyces sp. AcH 505. Oaks typically grow rhythmically, with alternating root flushes (RFs) and shoot flushes (SFs). We explored the poorly understood mechanisms by which oaks integrate signals induced by their beneficial microbes and endogenous rhythmic growth at the level of gene expression. To this end, we compared transcript profiles of oak microcuttings at RF and SF during interactions with AcH 505 alone and in combination with the basidiomycetous EMF Piloderma croceum. RESULTS: The local root and distal leaf responses to the microorganisms differed substantially. More genes involved in the recognition of bacteria and fungi, defence and cell wall remodelling related transcription factors (TFs) were differentially expressed in the roots than in the leaves of oaks. In addition, interaction with AcH 505 and P. croceum affected the expression of a higher number of genes during SF than during RF, including AcH 505 elicited defence response, which was attenuated by co-inoculation with P. croceum in the roots during SF. Genes encoding leucine-rich receptor-like kinases (LRR-RLKs) and proteins (LRR-RLPs), LRR containing defence response regulators, TFs from bZIP, ERF and WRKY families, xyloglucan cell wall transglycolases/hydrolases and exordium proteins were differentially expressed in both roots and leaves of plants treated with AcH 505. Only few genes, including specific RLKs and TFs, were induced in both AcH 505 and co-inoculation treatments. CONCLUSION: Treatment with AcH 505 induces and maintains the expression levels of signalling genes encoding candidate receptor protein kinases and TFs and leads to differential expression of cell wall modification related genes in pedunculate oak microcuttings. Local gene expression response to AcH 505 alone and in combination with P. croceum are more pronounced when roots are in resting stages, possibly due to the fact that non growing roots re-direct their activity towards plant defence rather than growth.


Asunto(s)
Basidiomycota/fisiología , Bosques , Perfilación de la Expresión Génica , Micorrizas/fisiología , Streptomyces/fisiología , Árboles/genética , Árboles/microbiología , Regulación hacia Abajo/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Hojas de la Planta/genética , Raíces de Plantas/genética , Quercus/genética , Quercus/microbiología , Regulación hacia Arriba/genética
9.
Mol Plant Microbe Interact ; 27(9): 891-900, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24779643

RESUMEN

Rhizobacteria are known to induce defense responses in plants without causing disease symptoms, resulting in increased resistance to plant pathogens. This study investigated how Streptomyces sp. strain AcH 505 suppressed oak powdery mildew infection in pedunculate oak, by analyzing RNA-Seq data from singly- and co-inoculated oaks. We found that this Streptomyces strain elicited a systemic defense response in oak that was, in part, enhanced upon pathogen challenge. In addition to induction of the jasmonic acid/ethylene-dependent pathway, the RNA-Seq data suggests the participation of the salicylic acid-dependent pathway. Transcripts related to tryptophan, phenylalanine, and phenylpropanoid biosynthesis were enriched and phenylalanine ammonia lyase activity increased, indicating that priming by Streptomyces spp. in pedunculate oak shares some determinants with the Pseudomonas-Arabidopsis system. Photosynthesis-related transcripts were depleted in response to powdery mildew infection, but AcH 505 alleviated this inhibition, which suggested there is a fitness benefit for primed plants upon pathogen challenge. This study offers novel insights into the mechanisms of priming by actinobacteria and highlights their capacity to activate plant defense responses in the absence of pathogen challenge.


Asunto(s)
Ascomicetos/patogenicidad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Quercus/fisiología , Streptomyces/fisiología , Ciclopentanos/metabolismo , Etilenos/metabolismo , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Oxilipinas/metabolismo , Fotosíntesis , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Hojas de la Planta/parasitología , Hojas de la Planta/fisiología , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Raíces de Plantas/parasitología , Raíces de Plantas/fisiología , Quercus/inmunología , Quercus/microbiología , Quercus/parasitología , Ácido Salicílico/metabolismo , Metabolismo Secundario , Análisis de Secuencia de ARN , Transducción de Señal
10.
Phytochemistry ; 99: 44-51, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24412325

RESUMEN

A cDNA encoding the ester-forming hydroxybenzoic acid glucosyltransferase UGT84A13 was isolated from a cDNA library of Quercus robur swelling buds and young leaves. The enzyme displayed high sequence identity to resveratrol/hydroxycinnamate and hydroxybenzoate/hydroxycinnamate glucosyltransferases from Vitis species and clustered to the phylogenetic group L of plant glucosyltransferases, mainly involved in the formation of 1-O-ß-D-glucose esters. In silico transcriptome analysis confirmed expression of UGT84A13 in Quercus tissues which were previously shown to exhibit UDP-glucose:gallic acid glucosyltransferase activity. UGT84A13 was functionally expressed in Escherichia coli as N-terminal His-tagged protein. In vitro kinetic measurements with the purified recombinant enzyme revealed a clear preference for hydroxybenzoic acids as glucosyl acceptor in comparison to hydroxycinnamic acids. Of the preferred in vitro substrates, protocatechuic, vanillic and gallic acid, only the latter and its corresponding 1-O-ß-D-glucose ester were found to be accumulated in young oak leaves. This indicates that in planta UGT84A13 catalyzes the formation of , 1-O-galloyl-ß-D-glucose, the first committed step of gallotannin biosynthesis.


Asunto(s)
Glucosiltransferasas/metabolismo , Taninos Hidrolizables/metabolismo , Quercus/enzimología , Glucosiltransferasas/aislamiento & purificación , Taninos Hidrolizables/química , Estructura Molecular , Hojas de la Planta/enzimología , Brotes de la Planta/enzimología , Quercus/metabolismo
11.
New Phytol ; 199(2): 529-540, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23672230

RESUMEN

Oaks (Quercus spp.), which are major forest trees in the northern hemisphere, host many biotic interactions, but molecular investigation of these interactions is limited by fragmentary genome data. To date, only 75 oak expressed sequence tags (ESTs) have been characterized in ectomycorrhizal (EM) symbioses. We synthesized seven beneficial and detrimental biotic interactions between microorganisms and animals and a clone (DF159) of Quercus robur. Sixteen 454 and eight Illumina cDNA libraries from leaves and roots were prepared and merged to establish a reference for RNA-Seq transcriptomic analysis of oak EMs with Piloderma croceum. Using the Mimicking Intelligent Read Assembly (MIRA) and Trinity assembler, the OakContigDF159.1 hybrid assembly, containing 65 712 contigs with a mean length of 1003 bp, was constructed, giving broad coverage of metabolic pathways. This allowed us to identify 3018 oak contigs that were differentially expressed in EMs, with genes encoding proline-rich cell wall proteins and ethylene signalling-related transcription factors showing up-regulation while auxin and defence-related genes were down-regulated. In addition to the first report of remorin expression in EMs, the extensive coverage provided by the study permitted detection of differential regulation within large gene families (nitrogen, phosphorus and sugar transporters, aquaporins). This might indicate specific mechanisms of genome regulation in oak EMs compared with other trees.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Micorrizas/fisiología , Quercus/genética , Quercus/microbiología , Simbiosis/genética , Biota , Regulación hacia Abajo/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Estándares de Referencia , Análisis de Secuencia de ARN , Transcriptoma/genética , Regulación hacia Arriba/genética
12.
Nature ; 490(7418): 98-101, 2012 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-22951968

RESUMEN

Animal and plant development starts with a constituting phase called embryogenesis, which evolved independently in both lineages. Comparative anatomy of vertebrate development--based on the Meckel-Serrès law and von Baer's laws of embryology from the early nineteenth century--shows that embryos from various taxa appear different in early stages, converge to a similar form during mid-embryogenesis, and again diverge in later stages. This morphogenetic series is known as the embryonic 'hourglass', and its bottleneck of high conservation in mid-embryogenesis is referred to as the phylotypic stage. Recent analyses in zebrafish and Drosophila embryos provided convincing molecular support for the hourglass model, because during the phylotypic stage the transcriptome was dominated by ancient genes and global gene expression profiles were reported to be most conserved. Although extensively explored in animals, an embryonic hourglass has not been reported in plants, which represent the second major kingdom in the tree of life that evolved embryogenesis. Here we provide phylotranscriptomic evidence for a molecular embryonic hourglass in Arabidopsis thaliana, using two complementary approaches. This is particularly significant because the possible absence of an hourglass based on morphological features in plants suggests that morphological and molecular patterns might be uncoupled. Together with the reported developmental hourglass patterns in animals, these findings indicate convergent evolution of the molecular hourglass and a conserved logic of embryogenesis across kingdoms.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Desarrollo de la Planta/genética , Transcriptoma/genética , Animales , Arabidopsis/clasificación , Brassicaceae/genética , Secuencia Conservada/genética , Biología Evolutiva , Drosophila/embriología , Drosophila/genética , Desarrollo Embrionario/genética , Evolución Molecular , Perfilación de la Expresión Génica , Genes de Plantas/genética , Modelos Biológicos , Pez Cebra/embriología
13.
PLoS One ; 6(8): e22830, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21826210

RESUMEN

The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni²âº (Ni²âº-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO4²â» ions could restore hydrogen production to BL21(DE3); however, to only 25-30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO4²â» were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO4²â» and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis.


Asunto(s)
Biotecnología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Mutación , Nitrato-Reductasa/genética , Nitrato-Reductasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...