Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 18(9): 1815-27, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19554567

RESUMEN

The molecular chaperone, Hsp90, is an essential eukaryotic protein that assists in the maturation and activation of client proteins. Hsp90 function depends upon the binding and hydrolysis of ATP, which causes large conformational rearrangements in the chaperone. Hsp90 is highly conserved from bacteria to eukaryotes, and similar nucleotide-dependent conformations have been demonstrated for the bacterial, yeast, and human proteins. There are, however, important species-specific differences in the ability of nucleotide to shift the conformation from one state to another. Although the role of nucleotide in conformation has been well studied for the cytosolic yeast and human proteins, the conformations found in the absence of nucleotide are less well understood. In contrast to cytosolic Hsp90, crystal structures of the endoplasmic reticulum homolog, Grp94, show the same conformation in the presence of both ADP and AMPPNP. This conformation differs from the yeast AMPPNP-bound crystal state, suggesting that Grp94 may have a different conformational cycle. In this study, we use small angle X-ray scattering and rigid body modeling to study the nucleotide free states of cytosolic yeast and human Hsp90s, as well as mouse Grp94. We show that all three proteins adopt an extended, chair-like conformation distinct from the extended conformation observed for the bacterial Hsp90. For Grp94, we also show that nucleotide causes a small shift toward the crystal state, although the extended state persists as the major population. These results provide the first evidence that Grp94 shares a conformational state with other Hsp90 homologs.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Proteínas de la Membrana/química , Animales , Apoproteínas/química , Cristalografía por Rayos X , Citosol/química , Retículo Endoplásmico/química , Humanos , Ratones , Modelos Moleculares , Nucleótidos/química , Conformación Proteica , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Dispersión del Ángulo Pequeño
4.
J Mol Biol ; 364(4): 551-60, 2006 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-17010990

RESUMEN

UDP-glucose is the universal activated form of glucose, employed in all organisms for glucosyl transfer reactions and as precursor for various activated carbohydrates. In animal and fungal metabolism, UDP-glucose is required for utilization of galactose and for the synthesis of glycogen, the major carbohydrate storage polymer. The formation of UDP-glucose is catalyzed by UDP-glucose pyrophosphorylase (UGPase), which is highly conserved among eukaryotes. Here, we present the crystal structure of yeast UGPase, Ugp1p. Both in solution and in the crystal, Ugp1p forms homooctamers, which represent the enzymatically active form of the protein. Ugp1p subunits consist of three domains, with the active site presumably located in the central SpsA GnT I core (SGC) domain. The association in the octamer is mediated by contacts between left-handed beta-helices in the C-terminal domains, forming a toroidal solenoid structure in the core of the complex. The catalytic domains attached to this scaffold core do not directly contact each other, consistent with simple Michaelis-Menten kinetics found for Ugp1p. Conservation of hydrophobic residues at the subunit interfaces suggests that all fungal and animal homologs form this quarternary structure arrangement in contrast to monomeric plant UGPases, which have charged residues at these positions. Implications of this oligomeric arrangement for regulation of UGPase activity in fungi and animals are discussed.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/química , UTP-Glucosa-1-Fosfato Uridililtransferasa/química , Sitios de Unión , Dominio Catalítico , Interacciones Hidrofóbicas e Hidrofílicas , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química
5.
Mol Cell ; 23(6): 887-97, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16973440

RESUMEN

Aberrant folding and fibrillar aggregation by polyglutamine (polyQ) expansion proteins are associated with cytotoxicity in Huntington's disease and other neurodegenerative disorders. Hsp70 chaperones have an inhibitory effect on fibril formation and can alleviate polyQ cytotoxicity. Here we show that the cytosolic chaperonin, TRiC, functions synergistically with Hsp70 in this process and is limiting in suppressing polyQ toxicity in a yeast model. In vitro reconstitution experiments revealed that TRiC, in cooperation with the Hsp70 system, promotes the assembly of polyQ-expanded fragments of huntingtin (Htt) into soluble oligomers of approximately 500 kDa. Similar oligomers were observed in yeast cells upon TRiC overexpression and were found to be benign, in contrast to conformationally distinct Htt oligomers of approximately 200 kDa, which accumulated at normal TRiC levels and correlated with inhibition of cell growth. We suggest that TRiC cooperates with the Hsp70 system as a key component in the cellular defense against amyloid-like protein misfolding.


Asunto(s)
Chaperoninas/fisiología , Péptidos/química , Chaperoninas/metabolismo , Expansión de las Repeticiones de ADN , Proteínas Fluorescentes Verdes/análisis , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Péptidos/metabolismo , Pliegue de Proteína , Proteínas Recombinantes de Fusión/análisis , Secuencias Repetitivas de Aminoácido , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
EMBO Rep ; 7(1): 78-84, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16239928

RESUMEN

The nascent chain-associated complex (NAC) is a dimeric protein complex of archaea and eukarya that interacts with ribosomes and translating polypeptide chains. We show that, in yeast, NAC and the signal-recognition particle (SRP) share the universally conserved ribosomal protein L25 as a docking site, which is in close proximity to the ribosomal exit tunnel. The amino-terminal segment of beta-NAC was found to be required for L25 binding. Purified NAC can prevent protein aggregation in vitro and thus shows certain properties of a molecular chaperone. Interestingly, the alpha-subunit of NAC interacts with the 54 kDa subunit of SRP. Consistent with a regulatory role of NAC in protein translocation into the endoplasmic reticulum (ER), we find that deletion of NAC results in an induction of the ER stress-response pathway. These results identify L25 as a conserved interaction platform for specific cytosolic factors that guide nascent polypeptides to their proper cellular destination.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Fúngicas/genética , Complejos Multiproteicos , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Ribosómicas/genética , Técnicas del Sistema de Dos Híbridos
7.
EMBO J ; 22(19): 5230-40, 2003 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-14517260

RESUMEN

The role in protein folding of the eukaryotic chaperonin TRiC/CCT is only partially understood. Here, we show that a group of WD40 beta-propeller proteins in the yeast cytosol interact transiently with TRiC upon synthesis and require the chaperonin to reach their native state. TRiC cooperates in the folding of these proteins with the ribosome-associated heat shock protein (Hsp)70 chaperones Ssb1/2p. In contrast, newly synthesized actin and tubulins, the major known client proteins of TRiC, are independent of Ssb1/2p and instead use the co-chaperone GimC/prefoldin for efficient transfer to the chaperonin. GimC can replace Ssb1/2p in the folding of WD40 substrates such as Cdc55p, but combined deletion of SSB and GIM genes results in loss of viability. These findings expand the substrate range of the eukaryotic chaperonin by a structurally defined class of proteins and demonstrate an essential role for upstream chaperones in TRiC-assisted folding.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas Asociadas a Microtúbulos/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteína Fosfatasa 2 , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas , Región del Complejo T del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...